SRI SARADA COLLEGE FOR WOMEN (AUTONOMOUS),

Reaccredited with 'B++' Grade by NAAC Affiliated to Periyar University SALEM- 636 016

PG & RESEARCH DEPARTMENT OF PHYSICS

OUTCOME BASED SYLLABUS

M.Sc. Physics

For the students admitted in 2024 – 2025 (I, II, III & IV Semester)

SRI SARADA COLLEGE FOR WOMEN (AUTONOMOUS), SALEM –16 PG & RESEARCH DEPARTMENT OF PHYSICS M.Sc. PHYSICS

Programme Structure Under CBCS

(For the students admitted in 2024-25)

Total Credits: 91+ Extra Credits (Maximum 16)

SEMESTER-I							
Course	Course Title	Code	Hours	Credits			
Core Course -I	ore Course -I Mathematical Physics		7	5			
Core Course -II	Classical Mechanics and Relativity	24PPHCC2	7	5			
Core Course -III	Core Practical – I	24PPHCCQ1	6	4			
Elective- I Energy Physics / Analysis of Crystal Struct		24PPHDSEC1A 24PPHDSEC1B	5	3			
Elective- II	Linear and Digital ICs and Applications / General Relativity and Cosmology	24PPHDSEC2A 24PPHDSEC2B	5	3			
		Total	30	20			
Extra Skills	 Value Education Physical Fitness Practice Productive Preparation for CS Competitive Examinations - I Extra Credit) 						
Extra Credi	ts are given for extra skills and c	courses qualified in N	AOOC/NPT	EL			

	SEMESTE	R-II			
Course	Course Title	Code	Hours	Credits	
Core Course -IV	Statistical Mechanics	24PPHCC3	5	5	
Core Course -V	Quantum Mechanics -I	24PPHCC4	5	5	
Core Course -VI	Core Practical – II	24PPHCCQ2	6	4	
Elective- III	Advanced Optics/ Quantum Field Theory	24PPHDSEC3A 24PPHDSEC3B	4	3	
Elective- IV	Communication Electronics/ Plasma Physics	24PPHDSEC4A /24PPHDSEC4B	4	3	
Extra Disciplinary Course	Communication Systems	24PPHEDC1	4	2	
Common Subject	Human Rights	24PHRSC	2	1	
	I	Total	30	23	
Extra Skills	 Value Education Physical Fitness Practice Productive Preparation for CS /SET/JRF/TRB Competitive Ex Self Study 1 Extra Credit 		SC2)		
Extra Cred	its are given for extra skills and	courses qualified in M	OOC/NP	TEL	

the first year and 2 credits willbe included in the Third Semester Marks Statement.

SEMESTER-III							
COURSE	COURSE TITLE	CODE	HOURS	CREDITS			
Core Course -VII	Quantum Mechanics –II	24PPHCC5	5	5			
Core Course -VIII	Condensed Matter Physics	24PPHCC6	5	5			
Core Course -IX	Electromagnetic Theory	24PPHCC7	5	5			
Core Course -X	Core Practical – III	24PPHCCQ3	8	4			
Elective – V	Microprocessor 8085 and Microcontroller 8051 / Advanced Spectroscopy (Industry Module)	24PPHDSEC5A/ 24PPHDSEC5B	4	3			
Extra Disciplinary Course -II	Sewage and Waste Water Treatment and Reuse	24PPHEDC2	3	2			
	Internship	24PPHI	-	2			
	Total		30	26			
	Value Education Physical Eitness Practice						
Extra Skills	 Physical Fitness Practice Productive Preparation for CSIR-UGC NET / SET / JRF/ TRB Competitive Examinations - III (24PPHSC3) 						
	(Self – study –1 Extra Credit)						

METHOD OF EVALUATION

THEORY

Continuous Internal Assessment	End Semester Examination	Total	Grade
30	70	100	

PRACTICALS

Continuous Internal Assessment	End Semester Examination	Total	Grade
30	70	100	

SEMESTER - IV

Course	Course Title	Code	No. of Hours	Credit			
Core Course -XI	Nuclear and Particle Physics	24PPHCC8	5	5			
Core Course -XII	Spectroscopy	24PPHCC9	5	4			
Core Course - XIII	Core Practical - IV - Computational Physics	24PPHCCQ4	3	1			
Project	Project and Viva Voce	ct and Viva Voce 24PPHPC					
Elective - VI	Numerical Methods and Computer Programming / Solar Energy Utilization	24PPHDSEC6A / 24PPHDSEC6B	3	3			
Professional Competency Skill	Characterization of Materials	24PPHPCS	4	2			
Extension Activity	Extension Activity	24PPHEX	-	1			
		Total	30	23			
 Value Education Physical Fitness Practice Productive Preparation for CSIR-UGC NET / SET / JRF/ TRB Competitive Examinations - IV (24PPHSC4) (Self - study -1 Extra Credit) 							
Extra crea	lits are given for extra skills and	courses qualified in M	100C/NPTI	EL			

SEMESTER – I								
COURSE CODE	COURSE TITLE	Category	L	Т	Р	Credits	Inst. Hours	Marks
24PPHCC1	MATHEMATICAL PHYSICS	Core	4	1	-	5	7	70

Pre-Requisites					
Matrices, vectors, differentiation, integration, differential equations					
Learning Objectives					
> To equip students with the mathematical techniques needed for understanding					
theoretical treatment in different courses taught in their program					
\succ To extend their manipulative skills to apply mathematical techniques in their fields					

To extend their manipulative skills to apply mathematical techniques in their fields
 To help students apply Mathematics in solving problems of Physics

UNITS	Course Details
UNIT I: LINEAR VECTOR SPACE	Basic concepts – Definitions- examples of vector space – Linear independence - Scalar product- Orthogonality – Gram-Schmidt orthogonalization procedure –linear operators – Dual space- ket and bra notation – orthogonal basis – change of basis – Isomorphism of vector space – projection operator –Eigen values and Eigen functions – Direct sum and invariant subspace – orthogonal transformations and rotation
UNIT II: COMPLEX ANALYSIS	Review of Complex Numbers -de Moivre's theorem-Functions of a Complex Variable- Differentiability -Analytic functions- Harmonic Functions- Complex Integration- Contour Integration, Cauchy – Riemann conditions – Singular points – Cauchy's Integral Theorem and integral Formula -Taylor's Series - Laurent's Expansion- Zeros and poles – Residue theorem and its Application: Potential theory - (1) Electrostatic fields and complex potentials - Parallel plates, coaxial cylinders and an annular region (2) Heat problems - Parallel plates and coaxial cylinders
UNIT III: MATRICES	Types of Matrices and their properties, Rank of a Matrix -Conjugate of a matrix - Adjoint of a matrix - Inverse of a matrix - Hermitian and Unitary Matrices -Trace of a matrix- Transformation of matrices - Characteristic equation - Eigen values and Eigen vectors - Cayley–Hamilton theorem –Diagonalization
UNIT IV: FOURIER TRANSFORMS	Definitions -Fourier transform and its inverse - Transform of Gaussian function and Dirac delta function -Fourier transform ofderivatives - Cosine and sine transforms - Convolution theorem. Application: Diffusion equation: Flow of heat in an infinite and in a semi - infinite medium - Wave equation: Vibration of an infinite string and of a semi
& LAPLACE	- infinite string. Laplace transform and its inverse - Transforms of derivatives and

TRANSFORMS	integrals – Differentiation and integration of transforms - Dirac delta functions - Application - Laplace equation: Potential problem in a semi - infinite strip					
UNIT V: DIFFERENTIAL EQUATIONS	Second order differential equation- Sturm-Liouville's theory - Series solution with simple examples - Hermite polynomials - Generating function - Orthogonality properties - Recurrence relations – Legendre polynomials - Generating function - Rodrigue formula – Orthogonality properties - Dirac delta function- One dimensional Green's function and Reciprocity theorem -Sturm-Liouville's type equation in one dimension & their Green's function.					
UNIT VI: PROFESSIONAL COMPONENTS	Expert Lectures, Online Seminars - Webinars on Industrial Interactions/Visits, Competitive Examinations, Employable and Communication Skill Enhancement, Social Accountability and Patriotism					
Skill Acquired	Knowledge, Problem Solving, Analytical Ability Professional Competency, Profession Communication and Transferrable skills					
TEXT BOOKS	 George Arfken and Hans J Weber, 2012, Mathematical Methods for Physicists – A Comprehensive Guide (7th edition), Academic press. P.K. Chattopadhyay, 2013, <i>Mathematical Physics</i> (2nd edition), New Age, New Delhi A W Joshi, 2017, Matrices and Tensors in Physics, 4th Edition (Paperback), New Age International Pvt. Ltd., India B. D. Gupta, 2009, <i>Mathematical Physics</i> (4th edition), Vikas Publishing House, New Delhi. H. K. Dass and Dr. Rama Verma, 2014, Mathematical Physics, Seventh Revised Edition, S. Chand & Company Pvt. Ltd., New Delhi. 					
REFERENCE BOOKS	 E. Kreyszig, 1983, Advanced Engineering Mathematics, Wiley Eastern, New Delhi, D. G. Zill and M. R. Cullen, 2006, Advanced Engineering Mathematics, 3rd Ed. Narosa, New Delhi. S. Lipschutz, 1987, Linear Algebra, Schaum's Series, McGraw - Hill, New York 3. E. Butkov, 1968, Mathematical Physics Addison - Wesley, Reading, Massachusetts. P. R. Halmos, 1965, Finite Dimensional Vector Spaces, 2nd Edition, Affiliated East West, New Delhi. C. R. Wylie and L. C. Barrett, 1995, Advanced Engineering Mathematics, 6 th Edition, International Edition, McGraw-Hill, New York 					
WEB SOURCES	 www.khanacademy.org https://youtu.be/LZnRIOA1_2I http://hyperphysics.phy-astr.gsu.edu/hbase/hmat.html#hmath https://www.youtube.com/watch?v=_2jymuM7OUU&list=PL hkiT_RYTEU27vS_SIED56gNjVJGO2qaZ https://archive.nptel.ac.in/courses/115/106/115106086/ 					

Board of Studies Date : 02.05.2023

COURSE OUTCOMES:

At the end of the course the student will be able to:

CO1	Understand use of bra-ket vector notation and explain the meaning of complete orthonormal set of basis vectors, and transformations and be able to apply them	K1, K2
CO2	Able to understand analytic functions, do complex integration, by applying Cauchy Integral Formula. Able to compute many real integrals and infinite sums via complex integration.	K2, K3
CO3	Analyze characteristics of matrices and its different types, and the process of diagonalization.	K4
CO4	Solve equations using Laplace transform and analyze the Fourier transformations of different function, grasp how these transformations can speed up analysis and correlate their importance in technology	K4, K5
CO5	To find the solutions for physical problems using linear differential equations and to solve boundary value problems using Green's function. Apply special functions in computation of solutions to real world problems	K2, K5
K1	- Remember; K2 – Understand; K3 - Apply; K4 - Analyze; K5 – Evaluat	æ

MAPPING WITH PROGRAM OUTCOMES:

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	3	3	3	3	3	3	3	2	3	2
CO2	2	3	3	3	3	3	3	2	2	2
CO3	3	3	3	2	2	3	3	2	3	2
CO4	3	3	3	3	2	3	3	2	2	2
CO5	3	2	3	3	2	3	3	2	2	3

	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6	PSO7	PSO8	PSO9	PSO10
CO1	3	3	3	3	3	3	3	2	3	2
CO2	2	3	3	3	3	3	3	2	2	2
CO3	3	3	3	2	2	3	3	2	3	2
CO4	3	3	3	3	2	3	3	2	2	2
CO5	3	2	3	3	2	3	3	2	2	3

SEMESTER – I											
COURSE CODE	COURSE TITLE	Category	L	Т	Р	Credits	Inst. Hours	Marks			
24PPHCC2	CLASSICAL MECHANICS AND RELATIVITY	Core	4	1	-	5	7	70			

Fundamentals of mechanics, Foundation in mathematical methods.

Learning Objectives

- > To understand fundamentals of classical mechanics.
- To understand Lagrangian formulation of mechanics and apply it to solve equation of motion.
- > To understand Hamiltonian formulation of mechanics and apply it to solve equation of motion.
- > To discuss the theory of small oscillations of a system.
- > To learn the relativistic formulation of mechanics of a system.

UNITS	Course Details
UNIT I: PRINCIPLES OF CLASSICAL MECHANICS	Mechanics of a single particle – mechanics of a system of particles – conservation laws for a system of particles – constraints – holonomic & non-holonomic constraints – generalized coordinates – configuration space – transformation equations – principle of virtual work.
UNIT II: LAGRANGIAN FORMULATION	D'Alembert's principle – Lagrangian equations of motion for conservative systems – applications: (i) simple pendulum (ii) Atwood's machine (iii) projectile motion.
UNIT III: HAMILTONIAN FORMULATION	Phase space – cyclic coordinates – conjugate momentum – Hamiltonian function – Hamilton's canonical equations of motion – applications: (i) simple pendulum (ii) one dimensional simple harmonic oscillator (iii) motion of particle in a central force field.
UNIT IV: SMALL OSCILLATIONS	Formulation of the problem – transformation to normal coordinates – frequencies of normal modes – linear triatomic molecule.
UNIT V: RELATIVITY	Inertial and non-inertial frames – Lorentz transformation equations – length contraction and time dilation – relativistic addition of velocities – Einstein's mass-energy relation – Minkowski's space – four vectors – position, velocity, momentum, acceleration and force in for vector notation and their transformations

UNIT VI: PROFESSIONAL COMPONENTS	Expert Lectures, Online Seminars - Webinars on Industrial Interactions/Visits, Competitive Examinations, Employable and Communication Skill Enhancement, SocialAccountability and Patriotism
Skill Acquired	Knowledge ,Problem Solving ,Analytical Ability Professional Competency, Profession Communication and Transferrable skills
TEXT BOOKS	 H. Goldstein, 2002, <i>Classical Mechanics</i>, 3rd Edition, Pearson Edu. J. C. Upadhyaya, <i>Classical Mechanics</i>, Himalaya Publshing. Co. New Delhi. R. Resnick, 1968, <i>Introduction to Special Theory of</i> <i>Relativity</i>, Wiley Eastern, New Delhi. R. G. Takwala and P.S. Puranik, Introduction to Classical Mechanics –Tata – McGraw Hill, New Delhi, 1980. N. C. Rana and P.S. Joag, Classical Mechanics - Tata McGraw Hill, 2001
REFERENCE BOOKS	 K. R. Symon, 1971, <i>Mechanics</i>, Addison Wesley, London. S. N. Biswas, 1999, <i>Classical Mechanics</i>, Books & Allied, Kolkata. Gupta and Kumar, <i>Classical Mechanics</i>, KedarNath. T.W.B. Kibble, <i>Classical Mechanics</i>, ELBS. Greenwood, <i>Classical Dynamics</i>, PHI, New Delhi.
WEB SOURCES	 http://poincare.matf.bg.ac.rs/~zarkom/Book_Mechanic s_Goldstein_Classical_Mechanics_optimized.pdf https://pdfcoffee.com/classical-mechanics-j-c- upadhyay-2014-editionpdf-pdf-free.html https://nptel.ac.in/courses/122/106/122106027/ https://ocw.mit.edu/courses/physics/8-09-classical- mechanics-iii-fall-2014/lecture-notes/ https://www.britannica.com/science/relativistic- mechanics

Board of Studies Date :02.05.2023

At the end of the course the student will be able to:

CO1	Understand the fundamentals of classical mechanics.	K2
CO2	Apply the principles of Lagrangian and Hamiltonian mechanics to solve the equations of motion of physical systems.	К3
CO3	Apply the principles of Lagrangian and Hamiltonian mechanics to solve the equations of motion of physical systems.	K3, K5
CO4	Analyze the small oscillations in systems and determine their normal modes of oscillations.	K4, K5
CO5	Understand and apply the principles of relativistic kinematics to the mechanical systems.	K2, K3
K	1 - Remember; K2 – Understand; K3 - Apply; K4 - Analyze; K5 – Evalu	ate

MAPPING WITH PROGRAM OUTCOMES:

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	2	3	3	3	2	2	2	3	2	2
CO2	2	3	3	3	2	2	2	3	2	2
CO3	2	3	3	3	2	2	2	3	2	2
CO4	2	3	3	3	2	2	2	3	2	2
CO5	2	3	3	3	2	2	2	3	2	2

	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6	PSO7	PSO8	PSO9	PSO10
CO1	3	3	3	3	3	3	3	2	3	2
CO2	2	3	3	3	3	3	3	2	2	2
CO3	3	3	3	2	2	3	3	2	3	2
CO4	3	3	3	3	2	3	3	2	2	2
CO5	3	2	3	3	2	3	3	2	2	2

SEMESTER – I										
COURSE CODE	COURSE TITLE	Category	L	Т	Р	Credits	Inst. Hours	Marks		
24PPHCCQ1	CORE PRACTICAL I	Core	-	-	6	4	6	60		

Knowledge and hands on experience of basic general and electronics experiments of Physics

Learning Objectives

- To understand the concept of mechanical behavior of materials and calculation of same using appropriate equations.
- > To calculate the thermodynamic quantities and physical properties of materials.
- > To analyze the optical and electrical properties of materials.

Course Details

(Any Twelve Experiments)

- 1. Determination of Young's modulus and Poisson's ratio by Hyperbolic fringes Cornu's Method
- 2. Determination of Viscosity of the given liquid Meyer's disc
- 3. Measurement of Coefficient of linear expansion- Air wedge Method
- 4. B-H loop using Anchor ring.
- 5. Determination of Thickness of the enamel coating on a wire by diffraction
- 6. Determination of Rydberg's Constant Hydrogen Spectrum
- 7. FP Etalon
- 8. Determination of Thickness of air film. Solar spectrum Hartmann's formula. Edser and Butler fringes.
- 9. Measurement of Band gap energy- Thermistor
- 10. Determination of Planck Constant LED Method
- 11. Determination of Specific charge of an electron Thomson's method.
- 12. Determination of Compressibility of a liquid using Ultrasonics
- 13. Determination of Wavelength, Separation of wavelengths Michelson Interferometer
- 14. GM counter Characteristics, inverse square law and absorption coefficient.
- 15. Measurement of Conductivity Four probe method.
- 16. Arc spectrum Iron.
- 17. Molecular spectra AlO band.
- 18. Measurement of wavelength of Diode Laser / He Ne Laser using Diffraction grating.
- 19. Determination of Diffraction pattern of light with circular aperture using Diode/He-Ne laser.
- 20. Study the beam divergence, spot size and intensity profile of Diode/He-Ne laser.
- 21. Measurements of Standing wave and standing wave co-efficient, Law of Inverse square, Receiver end transmitter behavior, Radiation Pattern Microwave testbench
- 22. UV-Visible spectroscopy Verification of Beer-Lambert's law and identification

of wavelength maxima - Extinction coefficient

- 23. Construction of relaxation oscillator using UJT
- 24. FET CS amplifier- Frequency response, input impedance, output impedance
- 25. Study of important electrical characteristics of IC741.
- 26. V-I Characteristics of different colours of LED.
- 27. Study of attenuation characteristics of Wien's bridge network and design of Wien's bridge oscillator using Op-Amp.
- 28. Study of attenuation characteristics of Phase shift network and design of Phase shift oscillator using Op-Amp.
- 29. Construction of Schmidt trigger circuit using IC 741 for a given hysteresisapplication as squarer.
- 30. Construction of square wave Triangular wave generator using IC 741
- 31. Construction of a quadrature wave using IC 324
- 32. Construction of pulse generator using the IC 741 application as frequency divider
- 33. Construction of Op-Amp- 4 bit Digital to Analog converter (Binary Weighted and R/2R ladder type)
- 34. Study of Binary to Gray and Gray to Binary code conversion.
- 35. Study of R-S, clocked R-S and D-Flip flop using NAND gates
- 36. Study of J-K, D and T flip flops using IC 7476/7473
- 37. Arithmetic operations using IC 7483- 4-bit binary addition and subtraction.
- 38. Study of Arithmetic logic unit using IC 74181.
- 39. Construction of Encoder and Decoder circuits using ICs.

eonstraction											
	1. Practical Physics, Gupta and Kumar, Pragati Prakasan.										
	2. Kit Developed for doing experiments in Physics- Instruction										
	manual, R. Srinivasan K.R Priolkar, Indian Academy of										
	Sciences.										
	3. Electronic Laboratory Primer a design approach, S.										
TEXT BOOKS	Poornachandra, B. Sasikala, Wheeler Publishing, New Delhi.										
	4. Electronic lab manual Vol I, K ANavas, Rajath Publishing.										
	5. Electronic lab manual Vol II, K ANavas, PHI Eastern										
	Economy Edition										
	1. Advanced Practical Physics, S.P Singh, Pragati Prakasan.										
	2. An advanced course in Practical Physics, D. Chattopadhayay,										
	C.R Rakshit, New Central Book Agency Pvt. Ltd										
DEFEDENCE	3. Op-Amp and linear integrated circuit, Ramakanth A										
REFERENCE	Gaykwad, Eastern Economy Edition.										
BOOKS	4. A course on experiment with He-Ne Laser, R.S. Sirohi, John										
	Wiley & Sons (Asia) Pvt. Ltd.										
	5. Electronic lab manual Vol II, Kuriachan T.D, Syam Mohan,										
	Ayodhya Publishing.										
Board of Studies D	Date : 02.05.2023										

CO1	Understand the strength of material using Young's modulus.	K2
CO2	Acquire knowledge of thermal behaviour of the materials.	K1
CO3	Understand theoretical principles of magnetism through the experiments.	K2
CO4	Acquire knowledge about arc spectrum and applications of laser	K1, K3
CO5	Improve the analytical and observation ability in Physics Experiments	K3, K5
CO6	Conduct experiments on applications of FET and UJT	K4
CO7	Analyze various parameters related to operational amplifiers.	K4
CO8	Understand the concepts involved in arithmetic and logical circuits using IC's	K2
CO9	Acquire knowledge about Combinational Logic Circuits and Sequential Logic Circuits	K1
CO10	Analyze the applications of counters and registers	K4

At the end of the course the student will be able to:

K1 - Remember; K2 – Understand; K3 - Apply; K4 - Analyze; K5 – Evaluate

MAPPING WITH PROGRAM OUTCOMES:

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	2	2	2	3	2	2	2	1	2	3
CO2	2	2	3	3	3	3	3	3	3	3
CO3	3	3	3	3	3	3	3	3	3	3
CO4	3	2	3	3	3	3	3	3	3	3
CO5	3	3	3	3	3	3	2	2	2	2
CO6	2	2	2	3	3	1	1	1	3	3
CO7	2	2	3	3	3	1	1	1	3	3
CO8	3	3	3	3	3	3	2	2	3	3
CO9	3	3	3	3	3	3	1	1	1	1
CO10	3	3	3	3	3	3	1	1	1	1

СО	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6	PSO7	PSO8	PSO9	PSO10
CO1	2	2	2	3	2	2	2	1	2	3
CO2	2	2	3	3	3	3	3	3	3	3
CO3	3	3	3	3	3	3	3	3	3	3
CO4	3	2	3	3	3	3	3	3	3	3
CO5	3	3	3	3	3	3	2	2	2	2
CO6	2	2	2	3	3	1	1	1	3	3
CO7	2	2	3	3	3	1	1	1	3	3
CO8	3	3	3	3	3	3	2	2	3	3
CO9	3	3	3	3	3	3	1	1	1	1
CO10	3	3	3	3	3	3	1	1	1	1

SEMESTER –	I							
COURSE CODE	COURSE TITLE	Category	L	Т	Р	Credits	Inst. Hours	Marks
24PPHCC2	CLASSICAL MECHANICS AND RELATIVITY	Core	4	1	-	5	7	70

Fundamentals of mechanics, Foundation in mathematical methods.

Learning Objectives

- > To understand fundamentals of classical mechanics.
- To understand Lagrangian formulation of mechanics and apply it to solve equation of motion.
- > To understand Hamiltonian formulation of mechanics and apply it to solve equation of motion.
- > To discuss the theory of small oscillations of a system.
- > To learn the relativistic formulation of mechanics of a system.

UNITS	Course Details
UNIT I: PRINCIPLES OF CLASSICAL MECHANICS	Mechanics of a single particle – mechanics of a system of particles – conservation laws for a system of particles – constraints – holonomic & non-holonomic constraints – generalized coordinates – configuration space – transformation equations – principle of virtual work.
UNIT II: LAGRANGIAN FORMULATION	D'Alembert's principle – Lagrangian equations of motion for conservative systems – applications: (i) simple pendulum (ii) Atwood's machine (iii) projectile motion.
UNIT III: HAMILTONIAN FORMULATION	Phase space – cyclic coordinates – conjugate momentum – Hamiltonian function – Hamilton's canonical equations of motion – applications: (i) simple pendulum (ii) one dimensional simple harmonic oscillator (iii) motion of particle in a central force field.
UNIT IV: SMALL OSCILLATIONS	Formulation of the problem – transformation to normal coordinates – frequencies of normal modes – linear triatomic molecule.
UNIT V: RELATIVITY	Inertial and non-inertial frames – Lorentz transformation equations – length contraction and time dilation – relativistic addition of velocities – Einstein's mass-energy relation – Minkowski's space – four vectors – position, velocity, momentum, acceleration and force in for vector notation and their transformations

UNIT VI: PROFESSIONAL COMPONENTS	Expert Lectures, Online Seminars - Webinars on Industrial Interactions/Visits, Competitive Examinations, Employable and Communication Skill Enhancement, SocialAccountability and Patriotism
Skill Acquired	Knowledge ,Problem Solving ,Analytical Ability Professional Competency, Profession Communication and Transferrable skills
TEXT BOOKS	 H. Goldstein, 2002, <i>Classical Mechanics</i>, 3rd Edition, Pearson Edu. J. C. Upadhyaya, <i>Classical Mechanics</i>, Himalaya Publshing. Co. New Delhi. R. Resnick, 1968, <i>Introduction to Special Theory of</i> <i>Relativity</i>, Wiley Eastern, New Delhi. R. G. Takwala and P.S. Puranik, Introduction to Classical Mechanics –Tata – McGraw Hill, New Delhi, 1980. N. C. Rana and P.S. Joag, Classical Mechanics - Tata McGraw Hill, 2001
REFERENCE BOOKS	 K. R. Symon, 1971, <i>Mechanics</i>, Addison Wesley, London. S. N. Biswas, 1999, <i>Classical Mechanics</i>, Books & Allied, Kolkata. Gupta and Kumar, <i>Classical Mechanics</i>, KedarNath. T.W.B. Kibble, <i>Classical Mechanics</i>, ELBS. Greenwood, <i>Classical Dynamics</i>, PHI, New Delhi.
WEB SOURCES	 6. http://poincare.matf.bg.ac.rs/~zarkom/Book_Mechanic s_Goldstein_Classical_Mechanics_optimized.pdf 7. https://pdfcoffee.com/classical-mechanics-j-c- upadhyay-2014-editionpdf-pdf-free.html 8. https://nptel.ac.in/courses/122/106/122106027/ 9. https://ocw.mit.edu/courses/physics/8-09-classical- mechanics-iii-fall-2014/lecture-notes/ 10. https://www.britannica.com/science/relativistic- mechanics

At the end of the course the student will be able to:

CO1	Understand the fundamentals of classical mechanics.	K2
CO2	Apply the principles of Lagrangian and Hamiltonian mechanics to solve the equations of motion of physical systems.	K3
CO3	Apply the principles of Lagrangian and Hamiltonian mechanics to solve the equations of motion of physical systems.	K3, K5
CO4	Analyze the small oscillations in systems and determine their normal modes of oscillations.	K4, K5
CO5	Understand and apply the principles of relativistic kinematics to the mechanical systems.	K2, K3
K	1 - Remember; K2 – Understand; K3 - Apply; K4 - Analyze; K5 – Evalu	ate

MAPPING WITH PROGRAM OUTCOMES:

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	2	3	3	3	2	2	2	3	2	2
CO2	2	3	3	3	2	2	2	3	2	2
CO3	2	3	3	3	2	2	2	3	2	2
CO4	2	3	3	3	2	2	2	3	2	2
CO5	2	3	3	3	2	2	2	3	2	2

	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6	PSO7	PSO8	PSO9	PSO10
CO1	3	3	3	3	3	3	3	2	3	2
CO2	2	3	3	3	3	3	3	2	2	2
CO3	3	3	3	2	2	3	3	2	3	2
CO4	3	3	3	3	2	3	3	2	2	2
CO5	3	2	3	3	2	3	3	2	2	2

SEMESTER – I										
COURSE CODE	COURSE TITLE	Category	L	Т	Р	Credits	Inst. Hours	Marks		
24PPHCCQ1	CORE PRACTICAL I	Core	-	-	6	4	6	60		

Knowledge and hands on experience of basic general and electronics experiments of Physics

Learning Objectives

- To understand the concept of mechanical behavior of materials and calculation of same using appropriate equations.
- ► To calculate the thermodynamic quantities and physical properties of materials.
- > To analyze the optical and electrical properties of materials.

Course Details

(Any Twelve Experiments)

- 1. Determination of Young's modulus and Poisson's ratio by Hyperbolic fringes Cornu's Method
- 2. Determination of Viscosity of the given liquid Meyer's disc
- 3. Measurement of Coefficient of linear expansion- Air wedge Method
- 4. B-H loop using Anchor ring.
- 5. Determination of Thickness of the enamel coating on a wire by diffraction
- 6. Determination of Rydberg's Constant Hydrogen Spectrum
- 7. FP Etalon
- 8. Determination of Thickness of air film. Solar spectrum Hartmann's formula. Edser and Butler fringes.
- 9. Measurement of Band gap energy- Thermistor
- 10. Determination of Planck Constant LED Method
- 11. Determination of Specific charge of an electron Thomson's method.
- 12. Determination of Compressibility of a liquid using Ultrasonics
- 13. Determination of Wavelength, Separation of wavelengths Michelson Interferometer
- 14. GM counter Characteristics, inverse square law and absorption coefficient.
- 15. Measurement of Conductivity Four probe method.
- 16. Arc spectrum Iron.
- 17. Molecular spectra AlO band.
- 18. Measurement of wavelength of Diode Laser / He Ne Laser using Diffraction grating.
- 19. Determination of Diffraction pattern of light with circular aperture using Diode/He-Ne laser.
- 20. Study the beam divergence, spot size and intensity profile of Diode/He-Ne laser.
- 21. Measurements of Standing wave and standing wave co-efficient, Law of Inverse square, Receiver end transmitter behavior, Radiation Pattern Microwave testbench
- 22. UV-Visible spectroscopy Verification of Beer-Lambert's law and identification of wavelength maxima Extinction coefficient
- 23. Construction of relaxation oscillator using UJT

-	ifier- Frequency response, input impedance, output impedance rtant electrical characteristics of IC741.
	ristics of different colours of LED. nuation characteristics of Wien's bridge network and design of Wien's
28. Study of atter	bridge oscillator using Op-Amp. nuation characteristics of Phase shift network and design of Phase shift oscillator using Op-Amp.
	of Schmidt trigger circuit using IC 741 for a given hysteresis- application as squarer.
	of square wave Triangular wave generator using IC 741 of a quadrature wave using IC 324
32. Construction	n of pulse generator using the IC 741 – application as frequency divider of Op-Amp- 4 bit Digital to Analog converter (Binary Weighted and R/2R ladder type)
35. Study of R-S,	ry to Gray and Gray to Binary code conversion. clocked R-S and D-Flip flop using NAND gates D and T flip flops using IC 7476/7473
37. Arithmetic op38. Study of Arith	erations using IC 7483- 4-bit binary addition and subtraction. Imetic logic unit using IC 74181. of Encoder and Decoder circuits using ICs.
TEXT BOOKS	 Practical Physics, Gupta and Kumar, Pragati Prakasan. Kit Developed for doing experiments in Physics- Instruction manual, R. Srinivasan K.R Priolkar, Indian Academy of Sciences. Electronic Laboratory Primer a design approach, S. Poornachandra, B. Sasikala, Wheeler Publishing, New Delhi. Electronic lab manual Vol I, K ANavas, Rajath Publishing. Electronic lab manual Vol II, K ANavas, PHI eastern Economy Edition
REFERENCE BOOKS	 Advanced Practical Physics, S.P Singh, Pragati Prakasan. An advanced course in Practical Physics, D. Chattopadhayay, C.R Rakshit, New Central Book Agency Pvt. Ltd Op-Amp and linear integrated circuit, Ramakanth A Gaykwad, Eastern Economy Edition. A course on experiment with He-Ne Laser, R.S. Sirohi, John Wiley & Sons (Asia) Pvt. Ltd. Electronic lab manual Vol II, Kuriachan T.D, Syam Mohan, Ayodhya Publishing.
Board of Studies D	

Board of Studies Date : 02.05.2023

CO1	Understand the strength of material using Young's modulus.	K2
CO2	Acquire knowledge of thermal behaviour of the materials.	K1
CO3	Understand theoretical principles of magnetism through the experiments.	K2
CO4	Acquire knowledge about arc spectrum and applications of laser	K1, K3
CO5	Improve the analytical and observation ability in Physics Experiments	K3, K5
CO6	Conduct experiments on applications of FET and UJT	K4
CO7	Analyze various parameters related to operational amplifiers.	K4
CO8	Understand the concepts involved in arithmetic and logical circuits using IC's	K2
CO9	Acquire knowledge about Combinational Logic Circuits and Sequential Logic Circuits	K1
CO10	Analyze the applications of counters and registers	K4

At the end of the course the student will be able to:

K1 - Remember; K2 – Understand; K3 - Apply; K4 - Analyze; K5 – Evaluate

MAPPING WITH PROGRAM OUTCOMES:

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	2	2	2	3	2	2	2	1	2	3
CO2	2	2	3	3	3	3	3	3	3	3
CO3	3	3	3	3	3	3	3	3	3	3
CO4	3	2	3	3	3	3	3	3	3	3
CO5	3	3	3	3	3	3	2	2	2	2
CO6	2	2	2	3	3	1	1	1	3	3
CO7	2	2	3	3	3	1	1	1	3	3
CO8	3	3	3	3	3	3	2	2	3	3
CO9	3	3	3	3	3	3	1	1	1	1
CO10	3	3	3	3	3	3	1	1	1	1

СО	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6	PSO7	PSO8	PSO9	PSO10
CO1	2	2	2	3	2	2	2	1	2	3
CO2	2	2	3	3	3	3	3	3	3	3
CO3	3	3	3	3	3	3	3	3	3	3
CO4	3	2	3	3	3	3	3	3	3	3
CO5	3	3	3	3	3	3	2	2	2	2
CO6	2	2	2	3	3	1	1	1	3	3
CO7	2	2	3	3	3	1	1	1	3	3
CO8	3	3	3	3	3	3	2	2	3	3
CO9	3	3	3	3	3	3	1	1	1	1
CO10	3	3	3	3	3	3	1	1	1	1

SEMESTER :I								
COURSE CODE	COURSE TITLE	Category	L	Т	Р	Credits	Inst	Marks
24PPHDSEC1A	ENERGY PHYSICS	ELECTIVE	4	1	-	3	5	70

	Pre-Requisites									
Knowledge of conv	entional energy resources									
	Learning Objectives									
 To learn about various renewable energy sources. To learn about various renewable energy sources. 										
To know the ways of effectively utilizing the oceanic energy.										
	To study the method of harnessing wind energy and its advantages.									
	iniques useful for the conversion of biomass into useful energy.									
	utilization of solar energy.									
UNITS	Course Details									
UNIT I:	Conventional and non-conventional energy sources and their									
INTRODUCTION	availability-prospects of Renewable energy sources- Energy from									
TO ENERGY	other sources-chemical energy-Nuclear energy- Energy storage									
SOURCES	and distribution.									
UNIT II:	Energy utilization–Energy from tides–Basic principle of tidal									
ENERGY FROM THE OCEANS	power–utilization of tidal energy – Principle of ocean thermal energy conversion systems.									
	Basic principles of wind energy conversion–power in the wind–									
UNIT III:	forces in the Blades– Wind energy conversion–Advantages and									
WIND ENERGY	disadvantages of wind energy conversion systems (WECS) -									
SOURCES	Energy storage–Applications of wind energy.									
	Biomass conversion Technologies– wet and dry process–									
UNIT IV:	Photosynthesis -Biogas Generation: Introduction-basic process:									
ENERGY FROM BIOMASS	Aerobic and anaerobic digestion – Advantages of anaerobic									
DIUMASS	digestion-factors affecting bio digestion and generation of gas- bio									
	gas from waste fuel- properties of biogas-utilization of biogas.									
	Solar radiation and its measurements-solar cells: Solar cells for									
UNIT V:	direct conversion of solar energy to electric powers-solar cell									
SOLAR ENERGY	parameter-solar cell electrical characteristics- Efficiency-solar									
SOURCES	water Heater –solar distillation– solar cooking–solar greenhouse –									
	Solar pond and its applications.									
UNIT VI:	Expert Lectures, Online Seminars - Webinars on Industrial									
PROFESSIONAL	Interactions/Visits, Competitive Examinations, Employable and Communication Skill Enhancement, Social Accountability and									
COMPONENTS	Patriotism									
	Knowledge, Problem Solving, Analytical Ability Professional									
Skill Acquired	Competency, Profession Communication and Transferrable skills									

	1. G.D. Rai, 1996, Non – convention sources of, 4th edition, Khanna
	publishers, New Delhi.
	2. S. Rao and Dr. ParuLekar, Energy technology.
TEXT	3. M.P. Agarwal, Solar Energy, S. Chand and Co., New Delhi (1983).
	4. Solar energy, principles of thermal collection and storage by S. P.
DOOKS	Sukhatme, 2 nd edition, Tata McGraw-Hill Publishing Co. Lt.,
BOOKS	New Delhi (1997).
	5. Energy Technology by S. Rao and Dr. Parulekar.
	1. Renewable energy resources, John Twidell and Tonyweir, Taylor
	and Francis group, London and New York.
	2. Applied solar energy, A. B. Meinel and A. P. Meinal
DEFEDENCE	3. John Twidell and Tony Weir, Renewable energy resources, Taylor
REFERENCE	and Francis group, London and New York.
BOOKS	4. Renewal Energy Technologies: A Practical Guide for Beginners
	C.S. Solanki-PHI Learning
	5. Introduction to Non-Conventional Energy Resources -Raja et. al.,
	Sci. Tech Publications
	1. https://www.open.edu/openlearn/ocw/mod/oucontent/view.php?id=2
	411&printable=1
	2. https://www.nationalgeographic.org/encyclopedia/tidal-energy/
WEB	3. https://www.ge.com/renewableenergy/wind-energy/what-is-wind-
SOURCES	
SUCICES	energy 4. https://www.reenergyholdings.com/renewable-energy/what-is-
	4. https://www.reenergynoldings.com/renewable-energy/what-is- biomass/
	5. https://www.acciona.com/renewable-energy/solar-energy/
Board of Studie	es Date : 02.05.2023

At the end of the course, the student will be able to:

CO1	To identify various forms of renewable and non-renewable energy sources	K1						
CO2	Understand the principle of utilizing the oceanic energy and apply it for practical applications.	K2						
CO3	Discuss the working of a windmill and analyze the advantages of wind energy.	К3						
CO4	Distinguish aerobic digestion process from anaerobic digestion.	K3, K4						
CO5	Understand the components of solar radiation, their measurement and apply them to utilize solar energy.	K2, K5						
K	K1 - Remember; K2 – Understand; K3 - Apply; K4 - Analyze; K5 - Evaluate;							

MAPPING WITH PROGRAM OUTCOMES:

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	2	3	3	3	2	2	2	3	3	3
CO2	2	3	3	3	2	2	2	3	3	3
CO3	2	3	3	3	2	2	2	3	3	3
CO4	2	3	3	3	2	2	2	3	3	3
CO5	2	3	3	3	2	2	2	3	3	3

	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6	PSO7	PSO8	PSO9	PSO10
CO1	2	3	3	3	2	2	2	3	3	3
CO2	2	3	3	3	2	2	2	3	3	3
CO3	2	3	3	3	2	2	2	3	3	3
CO4	2	3	3	3	2	2	2	3	3	3
CO5	2	3	3	3	2	2	2	3	3	3

SEMESTER –]	[
COURSE CODE	COURSE TITLE	Category	L	Т	Р	Credits	Inst. Hours	Marks
24PPHDSEC1B	ANALYSIS OF CRYSTAL STRUCTURES	ELECTIVE	2	1	-	3	4	70

Fundamentals of crystal structures, symmetry and X-Ray Diffraction techniques Learning Objectives

- > To teach the concept of crystal structures and symmetry, and diffraction theory
- To provide students with a background to X-ray generation, scattering theory and experimental diffraction from single crystals
- To provide instruction on the methods and basis for determining low-molecular weight crystal structures using X-ray Crystallography
- To give the students a background to the instrumentation used for powder diffraction and structure refinement using Rietveld method
- To teach the different levels of structure exhibited by proteins and nucleic acids and methods used in protein crystallography.

UNITS	Course details
UNIT I: CRYSTAL LATTICE	Unit cell and Bravais lattices - crystal planes and directions - basic symmetry elements operations - translational symmetries - point groups - space groups – equivalent positions - Bragg's law - reciprocal lattice concept -Laue conditions - Ewald and limiting spheres - diffraction symmetry - Laue groups.
UNIT II: DIFFRACTION	X-ray generation, properties - sealed tube, rotating anode, synchrotron radiation - absorption - filters and monochromators Atomic scattering factor - Fourier transformation and structure factor - anomalous dispersion - Laue, rotation/oscillation, moving film methods- interpretation of diffraction patterns - cell parameter determination - systematic absences - space group determination.
UNIT III: STRUCTURE ANALYSIS	Single crystal diffractometers - geometries - scan modes - scintillation and area detectors -intensity data collection – data reduction - factors affecting X-ray intensities – temperature and scale factor - electron density - phase problem - normalized structure factor - direct method fundamentals and procedures -Patterson function and heavy atom method - structure refinement - least squares method - Fourier and difference Fourier synthesis - R factor - structure interpretation - geometric calculations - conformational studies - computer program packages.

UNIT IV: POWDER METHODS	Fundamentals of powder diffraction - Debye Scherrermethod - diffractometer geometries - use of monochromators and Soller silts - sample preparation and data collection - identification of unknowns - powder diffraction files (ICDD) - Rietveld refinement fundamentals - profile analysis - peak shapes - whole pattern fitting - structure refinement procedures - auto-indexing – structure determination from powder data - new developments. Energy dispersive X-ray analysis – texture studies - crystallite size determination - residual stress analysis - high and low temperature and high pressure crystallography (basics only).				
UNIT V: PROTEIN CRYSTALLOGRAPHY	Globular and fibrous proteins, nucleic acids - primary, secondary, tertiary and quaternary structures - helical and sheet structures - Ramachandran map and its significance – crystallization methods for proteins - factors affecting protein crystallization - heavy atom derivatives – methods used to solve protein structures - anomalous dispersion methods.				
UNIT VI: PROFESSIONAL COMPONENTS	Expert Lectures, Online Seminars - Webinars on Industrial Interactions/Visits, Competitive Examinations, Employable and Communication Skill Enhancement, Social Accountability and Patriotism.				
TEXT BOOKS	 Azaroff, L.V., "Elements of X-Ray Crystallography", Techbooksl, New York, 1992. Blundell, T.L. and Johnson, L., "Protein Crystallography", Academic Press, New York, 1986. Cullity, B.D. and Stock, S.R. "Elements of X-ray Diffraction", Pearson, 2014. H.L. Bhat, Introduction to Crystal Growth Principlesand Practice CRC Press, Taylor & Francis Group, Boca Raton, Florida, 2015. B.R. Pamplin, Crystal Growth, Pergamon Press, Oxford, 1975. 				
REFERENCE BOOKS	 Glusker, J.P. and Trueblood, K.N. Crystal Structure Analysis: A Primer", Oxford University, Press, New York, 1994. Ladd, M.F.C. and Palmer, R.A., "Structure Determination by X-ray Crystallography", Plenum Press, New York, 3rd Edition, 1993. Stout, G.H. and Jensen, L."X-ray Structure Determination, A Practical Guide", Macmillan:, New York, 1989. Woolfson, M.M. "An Introduction to X-ray Crystallography" Cambridge University Press, New York, 1997. Sam Zhang, Lin Ki, Ashok Kumar, Materials Characterization Techniques, CRC Press, Taylor & Francis Group, Boca Raton, Florida, 2009 				
WEB SOURCES	1. https://archive.nptel.ac.in/courses/112/106/11210622 7/				

2.	https://archive.nptel.ac.in/courses/104/108/10410809
	8/
3.	https://www.digimat.in/nptel/courses/video/10210708
	6/L11.html
4.	https://onlinecourses.nptel.ac.in/noc19_cy35/preview
	https://onlinecourses.nptel.ac.in/noc19_cy35/preview
	5. https://nptel.ac.in/courses/104/104/104104011/

At the end of the course, the student will be able to:

CO1	Understand crystal symmetry and reciprocal lattice concept for X-ray Diffraction					
CO2	Gain a working knowledge of X-ray generation, X-ray photography with Laue, oscillation and moving film methods, and space group Determination					
CO3	Get an exposure to crystal structure determination using program Packages					
CO4	Understand the instrumentation used for powder diffraction, data					
CO5	Get an insight into the structural aspects of proteins and nucleic acids, crystallization of proteins and methods to solve protein structures	К5				
K1	- Remember; K2 – Understand; K3 - Apply; K4 - Analyze; K5 - Evaluat	e;				

MAPPING WITH PROGRAM OUTCOMES:

Map course outcomes (CO) for each course with program outcomes (PO) and program

specific outcomes (PSO) in the 3-point scale of STRONG (3), MEDIUM (2) and LOW (1).

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	3	3	3	2	3	2	1	2	2	2
CO2	3	3	3	2	2	2	1	2	2	2
CO3	3	3	2	2	2	2	2	2	2	2
CO4	3	2	2	2	2	2	2	2	2	2
CO5	3	2	2	2	2	2	2	2	2	2

	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6	PSO7	PSO8	PSO9	PSO10
CO1	3	3	3	2	3	2	1	2	2	2
CO2	3	3	3	2	2	2	1	2	2	2
CO3	3	3	2	2	2	2	2	2	2	2
CO4	3	2	2	2	2	2	2	2	2	2
CO5	3	2	2	2	2	2	2	2	2	2

SEMESTER – I								
COURSE CODE	COURSE TITLE	Category	L	Т	Р	Credits	Inst. Hours	Marks
24PPHDSEC2A	LINEAR AND DIGITAL ICs AND APPLICATIONS	Elective	4	1	-	3	5	70

Knowledge of semiconductor devices, basic concepts of digital and analog electronics Learning Objectives

- > To introduce the basic building blocks of linear integrated circuits.
- > To teach the linear and non-linear applications of operational amplifiers.
- > To introduce the theory and applications of PLL.
- To introduce the concepts of waveform generation and introduce one special function ICs.
- Exposure to digital IC's

UNITS	Course Details
UNIT I: INTEGRATED CIRCUITS AND OPERATIONAL AMPLIFIER	Introduction, Classification of IC's, basic information of Op-Amp 741 and its features, the ideal Operational amplifier, Op-Amp internal circuit and Op-Amp. Characteristics.
UNIT II: APPLICATIONS OF OP-AMP	LINEAR APPLICATIONS OF OP-AMP: Solution to simultaneous equations and differential equations, Instrumentation amplifiers, V toI and I to V converters. NON-LINEAR APPLICATIONS OF OP-AMP: Sample and Hold circuit, Log and Antilog amplifier, multiplier and divider, Comparators, Schmitt trigger, Multivibrators, Triangular and Square waveform generators.
UNIT III: ACTIVE FILTERS & TIMER AND PHASE LOCKED LOOPS	ACTIVE FILTERS: Introduction, Butterworth filters – 1st order, 2nd order low pass and high pass filters, band pass, band reject and all pass filters. TIMER AND PHASE LOCKED LOOPS: Introduction to IC 555 timer, description of functional diagram, monostable and as table operations and applications, Schmitt trigger, PLL - introduction, basic principle, phase detector/comparator, voltage controlled oscillator (IC 566), low pass filter, monolithic PLL and applications of PLL
UNIT IV: VOLTAGE REGULATOR & D to A AND A to D CONVERTERS	 VOLTAGE REGULATOR: Introduction, Series Op-Amp regulator, IC Voltage Regulators, IC 723 general purpose regulators, Switching Regulator. D to A AND A to D CONVERTERS: Introduction, basic DAC techniques -weighted resistor DAC, R-2R ladder DAC, inverted R- 2R DAC, A to D converters -parallel comparator type ADC, counter type ADC, successive approximation ADC and dual slope ADC,DAC and ADC Specifications.

	CMOS LOGIC: CMOS logic levels, MOS transistors, Basic CMOS
UNIT V:	Inverter, NAND and NOR gates, CMOS AND-OR-INVERT and
CMOS LOGIC,	
COMBINATIONA	OR-AND-INVERT gates, implementation of any function using
L CIRCUITS	CMOS logic. COMBINATIONAL CIRCUITS USING TTL 74XX
USING TTL 74XX	ICs: Study of logic gates using 74XX ICs, Four-bit parallel adder
ICs	(IC 7483), Comparator (IC 7485), Decoder (IC 74138, IC 74154),
&	BCD to 7-segment decoder (IC7447), Encoder (IC74147),
SEQUENTIAL	Multiplexer (IC74151), Demultiplexer (IC 74154).
CIRCUITS USING	SEQUENTIAL CIRCUITS USING TTL 74XX ICs: Flip Flops (IC
TTL 74XX ICs	7474, IC 7473), Shift Registers, Universal Shift Register (IC
1 1 L /4AA 105	74194), 4- bit asynchronous binary counter (IC 7493).
UNIT VI:	Expert Lectures, Online Seminars - Webinars on Industrial
PROFESSIONAL	Interactions/Visits, Competitive Examinations, Employable and
	Communication Skill Enhancement, Social Accountability and
COMPONENTS	Patriotism
	Knowledge ,Problem Solving ,Analytical Ability Professional
Skill Acquired	Competency, Profession Communication and Transferrable skills
	1. D. Roy Choudhury, Shail B. Jain (2012), Linear Integrated
	Circuit, 4th edition, New Age International Pvt. Ltd., NewDelhi,
	India
	2. Ramakant A. Gayakwad, (2012), OP-AMP and Linear
	Integrated Circuits, 4th edition, Prentice Hall / Pearson
	Education, New Delhi.
	3. B.L. Theraja and A.K. Theraja, 2004, A Textbook of Electrical
TEXT BOOKS	technology, S. Chand & Co.
	4. V.K. Mehta and Rohit Mehta, 2008, Principles of Electronics,
	S. Chand & Co, 12th Edition.
	5. V. Vijayendran, 2008, Introduction to Integrated electronics
	(Digital & Analog), S. Viswanathan Printers & Publishers
	Private Ltd, Reprint. V.
	1. Sergio Franco (1997), Design with operational amplifiers and
	analog integrated circuits, McGraw Hill, New Delhi.
	2. Gray, Meyer (1995), Analysis and Design of Analog Integrated
	Circuits, Wiley International, New Delhi.
REFERENCE	3. Malvino and Leach (2005), Digital Principles and Applications
BOOKS	5th Edition, Tata McGraw Hill, New Delhi
200110	4. Floyd, Jain (2009), Digital Fundamentals, 8th edition, Pearson
	Education, New Delhi.
	5. Integrated Electronics, Millman & Halkias, Tata McGraw Hill,
	17th Reprint (2000)
	1. https://nptel.ac.in/course.html/digital_circuits/
	2. https://nptel.ac.in/course.html/electronics/operational
	amplifier/
	3. https://www.allaboutcircuits.com/textbook/semiconductors/chp
WEB SOURCES	t-7/field-effect-controlled-thyristors/
	4. https://www.electrical4u.com/applications-of-op-amp/
	5. https://www.geeksforgeeks.org/digital-electronics-logic-
	design-tutorials/
Board of Studies Date	e : 02.05.2023

At the end of the course the student will be able to:

CO1	Learn about the basic concepts for the circuit configuration for the design	K1,
CO1	of linear integrated circuits and develops skill to solve problems	K5
CO2	Develop skills to design linear and non-linear applications circuits using Op-Amp and design the active filters circuits.	K3
CO3	Gain knowledge about PLL, and develop the skills to design the simple circuits using IC 555 timer and can solve problems related to it.	K1, K3
CO4	Learn about various techniques to develop A/D and D/A converters.	K2
CO5	Acquire the knowledge about the CMOS logic, combinational and sequential circuits	K1, K4

K1 - Remember; K2 – Understand; K3 - Apply; K4 - Analyze; K5 – Evaluate

MAPPING WITH PROGRAM OUTCOMES:

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	3	3	3	3	2	2	3	3	3	2
CO2	3	3	3	3	1	3	3	3	2	1
CO3	3	3	3	3	1	3	3	3	2	1
CO4	3	3	3	3	1	3	3	3	2	1
CO5	3	3	3	2	1	1	2	3	2	1

	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6	PSO7	PSO8	PSO9	PSO10
CO1	3	3	3	3	2	2	3	3	3	2
CO2	3	3	3	3	1	3	3	3	2	1
CO3	3	3	3	3	1	3	3	3	2	1
CO4	3	3	3	3	1	3	3	3	2	1
CO5	3	3	3	2	1	1	2	3	2	1

SEMESTER – I										
COURSE CODE	COURSE TITLE	Category	L	Т	Р	Credits	Inst. Hours	Marks		
24PPHDSEC2B	GENERAL RELATIVITY AND COSMOLOGY	ELECTIVE	3	1	-	3	4	70		

Pre-Requisites					
Skill in mathematics and mechanics					
Learning Objectives					
\succ To give an introduction to students in the areas of general relativity and cosmology					

UNITS	Course Details
UNIT I: TENSORS	Tensors in index notation - Kronecker and Levi Civita tensors - inner and outer products - contraction - symmetric and antisymmetric tensors - quotient law - metric tensors - covariant andcontravariant tensors - vectors - the tangent space - dual vectors - tensors - tensor products - the Levi-Civita tensor - tensors in Riemann spaces
UNIT I: TENSORS FIELD	Vector-fields, tensor-fields, transformation of tensors - gradient and Laplace operator in general coordinates - covariant derivatives and Christoffel connection - Elasticity: Field tensor - field energy tensor - strain tensor - tensor of elasticity- curvature tensor
UNIT III: GENERAL RELATIVITY	The spacetime interval - the metric - Lorentz transformations -space- time diagrams - world-lines - proper time - energy- momentum vector - energy-momentum tensor - perfect fluids - energy-momentum conservation - parallel transport - the parallel propagator - geodesics - affine parameters - the Riemann curvature tensor - symmetries of the Riemann tensor - the Bianchi identity
UNIT IV: TENSOR IN RELATIVITY	Ricci and Einstein tensors - Weyl tensor - Killing vectors - the Principle of Equivalence - gravitational redshift - gravitation asspace- time curvature - the Newtonian limit - physics in curvedspace-time - Einstein's equations - the Weak Energy Condition - causality - spherical symmetry - the Schwarzschild metric - perihelion precession
UNIT V: COSMOLOGY	Expansion of the Universe - thermal history - and the standard cosmological model - Friedmann - Robertson-Walker type models of the Universe - Primordial inflation and the theory of cosmological fluctuations - Theory and observations of the cosmic microwave background and of the large-scale structure of the Universe - Dark matter and dark energy - theoretical questions and observational evidence - inflation - origin of galaxies and other open problems

UNIT VI: PROFESSIONAL COMPONENTS	Expert Lectures, Online Seminars - Webinars on Industrial Interactions/Visits, Competitive Examinations, Employable and Communication Skill Enhancement, Social Accountability and Patriotism
TEXT BOOKS	 M. R. Spiegel, Vector Analysis, Schaum'a outline series, McGraw Hill, New York, 1974. James Hartle, Gravity: An introduction to Einstein's general relativity, San Francisco, Addison-Wesley, 2002 Sean Carroll, Spacetime and Geometry: An Introduction to General Relativity, (Addison-Wesley, 2004). Jerzy Plebanski and Andrzej Krasinski, An Introduction to General Relativity and Cosmology, Cambridge University Press 2006 Meisner, Thorne and Wheeler: Gravitation W. H. Freeman & Co., San Francisco 1973
REFERENCE BOOKS	 Robert M. Wald: Space, Time, and Gravity: the Theory of the Big Bang and Black Holes, Univ. of Chicago Press. J. V. Narlikar, Introduction to Cosmology, Jones & Bartlett 1983 Steven Weinberg, Gravitation and Cosmology, New York, Wiley, 1972. Jerzy Plebanski and Andrzej Krasinski, An Introduction to General Relativity and Cosmology, Cambridge University Press 2006 R Adler, M Bazin& M Schiffer, Introduction to General Relativity
WEB SOURCES	 http://www.fulviofrisone.com/attachments/article/486/A% 20First%20Course%20In%20General%20Relativity%20- %20Bernard%20F.Schutz.pdf https://link.springer.com/book/9780387406282 https://ocw.mit.edu/courses/8-962-general-relativity-spring- 2020/resources/lecture-18-cosmology-i/ 4. https://arxiv.org/abs/1806.10122 https://uwaterloo.ca/applied-mathematics/future- undergraduates/ what-you-can-learn-applied- mathematics/relativity-and-cosmology

At the end of the course, the student will be able to:

CO1	Skillfully handle tensors	K1			
CO2	Understanding of the underlying theoretical aspects of general relativity and cosmology	К2			
CO3	Gain knowledge on space time curvature	K1			
CO4	Equipped to take up research in cosmology	K3, K4			
CO5	Confidently solve problems using mathematical skills	K5			
K1 - Remember; K2 – Understand; K3 - Apply; K4 - Analyze; K5 - Evaluate;					

MAPPING WITH PROGRAM OUTCOMES:

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	3	3	1	3	2	3	2	2	2	2
CO2	3	3	1	3	2	3	2	2	2	2
CO3	3	2	1	2	1	2	1	1	3	2
CO4	3	2	1	2	1	2	1	1	3	2
CO5	3	2	1	2	1	2	1	1	3	2

	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6	PSO7	PSO8	PSO9	PSO10
CO1	3	3	1	3	2	3	2	2	2	2
CO2	3	3	1	3	2	3	2	2	2	2
CO3	3	2	1	2	1	2	1	1	3	2
CO4	3	2	1	2	1	2	1	1	3	2
CO5	3	2	1	2	1	2	1	1	3	2

SEMESTER – II								
COURSE CODE	COURSE TITLE	Category	L	Т	Р	Credits	Inst. Hours	Marks
24PPHCC3	STATISTICAL MECHANICS	Core	4	1	-	5	5	70

Laws of thermodynamics, phase transition, entropy, ensembles, partition function, classical and quantum statistics, thermal equilibrium, Brownian motion

Learning Objectives

- To acquire the knowledge of thermodynamic potentials and to understand phase transition in thermodynamics
- > To identify the relationship between statistic and thermodynamic quantities
- To comprehend the concept of partition function, canonical and grand canonical ensembles
- To grasp the fundamental knowledge about the three types of statistics
- To get in depth knowledge about phase transitions and fluctuation of thermodynamic properties that vary with time

UNITS	Course Details
UNIT I: PHASE TRANSITIONS	Thermodynamic potentials - Phase Equilibrium - Gibb's phase rule - Phase transitions and Ehrenfest's classifications –Third law of Thermodynamics. Order parameters – Landau's theory of phase transition - Critical indices - Scale transformations and dimensional analysis.
UNIT II: STATISTICAL MECHANICS AND THERMODYNAMICS	Foundations of statistical mechanics - Specification of states of a system - Micro canonical ensemble - Phase space – Entropy - Connection between statistics and thermodynamics – Entropy of an ideal gas using the micro canonical ensemble - Entropy of mixing and Gibb's paradox.
UNIT III: CANONICAL AND GRAND CANONICAL ENSEMBLES	Trajectories and density of states - Liouville's theorem - Canonical and grand canonical ensembles - Partition function - Calculation of statistical quantities - Energy and density fluctuations.
UNIT IV: CLASSICAL AND QUANTUM STATISTICS	Density matrix - Statistics of ensembles - Statistics of indistinguishable particles - Maxwell-Boltzmann statistics - Fermi-Dirac statistics - Ideal Fermi gas - Degeneracy - Bose- Einstein statistics - Plank radiation formula - Ideal Bose gas - Bose-Einstein condensation.

	Cluster expansion for a classical gas -Virial equation of state -						
UNIT V:	Calculation of the first Virial coefficient in the cluster expansion -						
REAL GAS,	Ising model - Mean-field theories of the Ising model in three, two and						
ISING MODEL	one dimensions - Exact solutions in one dimension. Correlation of						
AND	space-time dependent fluctuations - Fluctuations and transport						
FLUCTUATIONS	phenomena - Brownian motion - Langevin's theory - Fluctuation-						
	dissipation theorem - The Fokker-Planck equation						
UNIT VI:	Expert Lectures, Online Seminars - Webinars on Industrial						
PROFESSIONAL	Interactions/Visits, Competitive Examinations, Employable and						
COMPONENTS	Communication Skill Enhancement, Social Accountability and						
CONFORMIS	Patriotism						
	1. S.K.Sinha, 1990, Statistical <i>Mechanics</i> , Tata McGraw Hill,						
	New Delhi.						
	2. B.K.Agarwal and M. Eisner, 1998, Statistical Mechanics,						
	Second Edition New Age International, New Delhi.						
	3. J.K.Bhattacharjee, 1996, Statistical Mechanics: An						
TEXT BOOKS	Introductory Text, Allied Publication, New Delhi.						
	4. F.Reif, 1965, Fundamentals of Statistical and Thermal Physics,						
	McGraw -Hill, New York.						
	5. M. K. Zemansky, 1968, Heat and Thermodynamics, 5th edition,						
	McGraw-Hill New York.						
	1. R. K. Pathria, 1996, Statistical Mechanics, 2 nd edition, Butter						
	Worth Heinemann, New Delhi.						
	2. L. D. Landau and E. M. Lifshitz, 1969, Statistical Physics,						
	Pergamon Press, Oxford.						
REFERENCE	3. K. Huang, 2002, <i>Statistical Mechanics</i> , Taylor and Francis,						
BOOKS	London						
	4. W. Greiner, L. Neiseand H.Stoecker, Thermodynamics and						
	Statistical Mechanics, Springer Verlang, New York.						
	5. A. B. Gupta, H. Roy, 2002, <i>Thermal Physics</i> , Books and						
	Allied, Kolkata.						
	1. <u>https://byjus.com/chemistry/third-law-of-thermodynamics/</u>						
	2. <u>https://web.stanford.edu/~peastman/statmech/</u>						
	thermodynamics.html						
WEB SOURCES	3. https://en.wikiversity.org/wiki/Statistical_mechanics_						
	and_thermodynamics						
	4. https://en.wikipedia.org/wiki/Grand_canonical_ensemble_						
	5. <u>https://en.wikipedia.org/wiki/Ising_model</u>						
Board of Studies Da							
Louid of Studies Da							

At the end of the course the student will be able to:

CO1	To examine and elaborate the effect of changes in thermodynamic quantities on the states of matter during phase transition	K5
CO2	To analyze the macroscopic properties such as pressure, volume, temperature, specific heat, elastic moduli etc. using microscopic properties like intermolecular forces, chemical bonding, atomicity etc. Describe the peculiar behaviour of the entropy by mixing two gases Justify the connection between statistics and thermodynamic quantities	K4
CO3	Differentiate between canonical and grand canonical ensembles and to interpret the relation between thermodynamical quantities and partition function	K1
CO4	To recall and apply the different statistical concepts to analyze the behaviour of ideal Fermi gas and ideal Bose gas and also to compare and distinguish between the three types of statistics.	K4, K5
CO5	To discuss and examine the thermodynamical behaviour of gases under fluctuation and also using Ising model	K3
K	- Remember; K2 – Understand; K3 - Apply; K4 - Analyze; K5 – Evalua	te

MAPPING WITH PROGRAM OUTCOMES:

Map course outcomes (CO) for each course with program outcomes (PO) and program

specific outcomes (PSO) in the 3-point scale of STRONG (3), MEDIUM (2) and LOW (1).

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	3	3	3	1	1	2	3	1	1	3
CO2	3	3	3	1	1	2	3	1	1	3
CO3	3	3	3	1	1	2	3	2	1	3
CO4	3	3	3	1	1	2	3	2	1	3
CO5	3	3	3	1	1	2	3	1	1	3

	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6	PSO7	PSO8	PSO9	PSO10
CO1	3	3	3	1	1	2	3	1	1	3
CO2	3	3	3	1	1	2	3	1	1	3
CO3	3	3	3	1	1	2	3	2	1	3
CO4	3	3	3	1	1	2	3	2	1	3
CO5	3	3	3	1	1	2	3	1	1	3

SEMESTER – I	П							
COURSE CODE	COURSE TITLE	Category	L	Т	Р	Credits	Inst. Hours	Marks
24PPHCC4	QUANTUM MECHANICS – I	Core	4	1	-	5	5	70

Pre-Requisites

Newton's laws of motion, Schrodinger's equation, integration, differentiation.

- To develop the physical principles and the mathematical background important to quantum mechanical descriptions.
- > To describe the propagation of a particle in a simple, one-dimensional potential.
- To formulate and solve the Schrodinger's equation to obtain eigenvectors and energies for particle in a three-dimensional potential.
- To explain the mathematical formalism and the significance of constants of motion, and see their relation to fundamental symmetries in nature
- To discuss the Approximation methods like perturbation theory, Variational and WKB methods for solving the Schrödinger equation.

UNITS	Course Details
UNIT I: BASIC FORMALISM	Interpretation of the wave function – Time dependent Schrodinger equation –Time independent Schrodinger equation – Stationary states – Ehrenfest's theorem – Linear vector space – Linear operator – Eigen functions and Eigen Values – Hermitian Operator – Postulates of Quantum Mechanics – Simultaneous measurability of observables – General Uncertainty relation(Problems in normalization, Eigen values and expectation values)
UNIT II:ONE DIMENSIONAL AND THREE- DIMENSIONAL ENERGY EIGEN VALUE PROBLEMS	Square – well potential with rigid walls – Square well potential with finite walls – Square potential barrier – Alpha emission – Bloch waves in a periodic potential – Kronig-penny square – well periodic potential – Linear harmonic oscillator: Operator method –Particle moving in a spherically symmetric potential – System of two interacting particles – Hydrogen atom – Rigid rotator- Problems
UNIT III: GENERAL FORMALISM	Dirac notation – Equations of motions – Schrodinger representation – Heisenberg representation – Interaction representation – Coordinate representation – Momentum representation – Symmetries and conservation laws – Unitary transformation – Parity and time reversal

UNIT IV: APPROXIMATI	Time independent perturbation theory for non-degenerate energy levels – Degenerate energy levels – Stark effect in Hydrogen atom
ON METHODS	- Ground and excited state - Variation method - Helium atom - WKB approximation - Connection formulae (no derivation) -
	WKB quantization – Application to simple harmonic oscillator.
	Eigenvalue spectrum of general angular momentum – Ladder
UNIT V:	operators and their algebra – Matrix representation – Spin angular
ANGULAR	momentum – Addition of angular momenta – CG Coefficients –
MOMENTUM	Calculation for $j_1=j_2=1/2$ & $j_1=1, j_2=1/2$. Symmetry and anti –
	symmetry of wave functions – Construction of wave-functions and
	Pauli's exclusion principle.
UNIT VI:	Expert Lectures, Online Seminars - Webinars on Industrial
PROFESSIONAL	Interactions/Visits, Competitive Examinations, Employable and Communication Skill Enhancement, Social Accountability and
COMPONENTS	Patriotism
	1. P. M. Mathews and K. Venkatesan, A Text book of
	Quantum Mechanics, 2 nd edition(37th Reprint), Tata
	McGraw-Hill, New Delhi,
	2010.
	2. G. Aruldhas, Quantum Mechanics, 2nd edition, Prentice
	Hall of India, New Delhi, 2009.
TEXT BOOKS	3. David J Griffiths, Introduction to Quantum Mechanics.
	4th edition, Pearson, 2011. 4. SL Gupta and ID Gupta, Advanced Quantum Theory and
	Fields, 1 st Edition, S.Chand& Co., New Delhi, 1982.
	5. A. Ghatak and S. Lokanathan, Quantum Mechanics:
	Theory and Applications, 4 th Edition, Macmillan, India,
	1984.
	1. E. Merzbacher, Quantum Mechanics, 2nd Edition, John Wiley and Sons, New York, 1970.
	2. V. K. Thankappan, Quantum Mechanics, 2nd Edition,
	Wiley Eastern Ltd, New Delhi, 1985.
REFERENCE	3. L. D. Landau and E. M. Lifshitz, Quantum Mechanics, 1st
BOOKS	edition, Pergomon Press, Oxford, 1976. 4. S. N. Biswas, Quantum Mechanics, Books and Allied
	Ltd., Kolkata, 1999.
	5. V. Devanathan, Quantum Mechanics, 2nd edition, Alpha
	Science International Ltd, Oxford, 2011.
	1. http://research.chem.psu.edu/lxjgroup/download_files/che
	m565-c7.pdf
	 http://www.feynmanlectures.caltech.edu/III_20.html <u>http://web.mit.edu/8.05/handouts/jaffe1.pdf</u>
WEB SOURCES	4. https://hepwww.pp.rl.ac.uk/users/haywood/Group_Theory
	Lecture1.pdf
	5. <u>https://theory.physics.manchester.ac.uk/~xian/qm/chapter</u>
	<u>3.pdf</u>
Board of Studies Dat	e : 02.11.2023

At the end of the course the student will be able to:

CO1	Demonstrates a clear understanding of the basic postulates of quantum mechanics which serve to formalize the rules of quantum Mechanics	K1, K5
CO2	Is able to apply and analyze the Schrodinger equation to solve one	K3,
002	dimensional problems and three dimensional problems	K4
CO3	Can discuss the various representations, space time symmetries and	K1
005	formulations of time evolution	N1
CO4	Can formulate and analyze the approximation methods for various	K4,
CO4	quantum mechanical problems	K5
CO5	To apply non-commutative algebra for topics such as angular and spin	K3,
CO5	angular momentum and hence explain spectral line splitting.	K4
K1	- Remember; K2 – Understand; K3 - Apply; K4 - Analyze; K5 – Evaluat	te

MAPPING WITH PROGRAM OUTCOMES:

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	3	3	3	3	3	2	3	2	2	3
CO2	3	3	3	3	3	S	3	2	2	3
CO3	2	3	3	2	3	2	3	2	2	3
CO4	3	3	3	3	3	2	3	3	2	3
CO5	3	3	3	2	3	S	3	3	2	3

	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6	PSO7	PSO8	PSO9	PSO10
CO1	3	3	3	3	3	2	3	2	2	3
CO2	3	3	3	3	3	S	3	2	2	3
CO3	2	3	3	2	3	2	3	2	2	3
CO4	3	3	3	3	3	2	3	3	2	3
CO5	3	3	3	2	3	S	3	3	2	3

SEMESTER -	II							
COURSE CODE	COURSE TITLE	Category	L	Т	Р	Credits	Inst. Hours	Marks
24PPHCCQ2	CORE PRACTICAL - II	Core	-	-	6	4	6	60

Knowledge and handling of basic general and electronics experiments of Physics

Learning Objectives

- To understand the concept of mechanical behavior of materials and calculation of same using appropriate equations.
- > To calculate the thermodynamic quantities and physical properties of materials.
- > To analyze the optical and electrical properties of materials.
- ► To study the different applications of operational amplifier circuits.
- ➢ To learn about Combinational Logic Circuits and Sequential Logic Circuits

Course Details

(Any Twelve Experiments)

- 1. Determination of Young's modulus and Poisson's ratio by Elliptical fringes Cornu's Method
- 2. Determination of Stefan's constant of radiation from a hot body
- 3. Arc spectrum: Copper
- 4. Determination of Solar constant
- 5. Hall Effect in Semiconductor. Determine the Hall coefficient, carrier concentration and carrier mobility
- 6. Determination of Refractive index of liquids using diode Laser/ He Ne Laser
- 7. Interpretation of vibrational spectra of a given material
- 8. Determination of I-V Characteristics and efficiency of solar cell.
- 9. IC 7490 as scalar and seven segment display using IC7447
- 10. Solving simultaneous equations IC 741 / IC LM324
- 11. Op-Amp –Active filters: Low pass, High pass and Band pass filters (Second Order) Batter worth filter
- 12. Construction of Current to Voltage and Voltage to Current Conversion using IC 741.
- 13. Realization of analog to digital converter (ADC) using 4-bit DAC and synchronous counter IC74193
- 14. Construction of square wave generator using IC 555 Study of VCO
- 15. Study of binary up / down counters IC 7476 / IC7473
- 16. Shift register and Ring counter and Johnson counter- IC 7476/IC 7474
- 17. Study of synchronous parallel 4-bit binary up/down counter using IC 74193
- 18. Study of asynchronous parallel 4-bit binary up/down counter using IC 7493
- 19. Study of Modulus Counter
- 20. Construction of Multiplexer and Demultiplexer using ICs.

	1. Practical Physics, Gupta and Kumar, Pragati Prakasan
	2. Kit Developed for doing experiments in Physics-Instruction
	manual, R.Srinivasan K.R Priolkar, Indian Academy of
	Sciences
TEXT BOOKS	3. Op-Amp and linear integrated circuit, Ramakanth A
	Gaykwad, Eastern Economy Edition.
	4. Electronic lab manual Vol I, K A Navas, Rajath Publishing
	Electronic lab manual Vol II, K A Navas, PHI eastern
	Economy Edition
	1. An advanced course in Practical Physics, D.Chattopadhayay,
	C.R Rakshit, New Central Book Agency Pvt. Ltd
	2. Advanced Practical Physics, S.P Singh, Pragati Prakasan
	3. A course on experiment with He-Ne Laser, R.S. Sirohi, John
REFERENCE	Wiley & Sons (Asia) Pvt.ltd
BOOKS	4. Electronic lab manual Vol II, Kuriachan T.D, Syam Mohan,
	Ayodhya Publishing
	5. Electronic Laboratory Primer a design approach, S.
	Poornachandra,
	,
	B.Sasikala, Wheeler Publishing, New Delhi

At the end of the course the student will be able to:

CO1	Understand the strength of material using Young's modulus	K2
CO2	Acquire knowledge of thermal behaviour of the materials	K1
CO3	Understand theoretical principles of magnetism through the experiments.	K2
CO4	Acquire knowledge about arc spectrum and applications of laser	K1
CO5	Improve the analytical and observation ability in Physics Experiments	K4
CO6	Conduct experiments on applications of FET and UJT	K5
CO7	Analyze various parameters related to operational amplifiers	K4
CO8	Understand the concepts involved in arithmetic and logical circuits using IC's	K2
CO9	Acquire knowledge about Combinational Logic Circuits and Sequential Logic Circuits	K3
CO10	Analyze the applications of counters and registers	K4
K1	- Remember; K2 – Understand; K3 - Apply; K4 - Analyze; K5 – Evalua	te

MAPPING WITH PROGRAM OUTCOMES:

Map course outcomes (CO) for each course with program outcomes (PO) and program $(\mathbf{P}_{\mathbf{C}})$ is the 2 minimum of STD ONG (2). MEDUAL (2) and Program

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	2	2	2	S	S	2	2	2	3	3
CO2	2	2	S	S	S	2	2	3	3	3
CO3	3	3	3	3	3	3	3	3	3	3
CO4	3	2	3	3	3	3	2	3	3	3
CO5	3	3	3	3	3	3	3	3	3	3
CO6	2	2	2	3	3	2	2	2	3	3
CO7	2	2	3	3	3	2	2	3	3	3
CO8	3	3	3	3	3	3	3	3	3	3
CO9	3	3	3	3	3	3	3	3	3	3
CO10	3	3	3	3	3	3	3	3	3	3

specific outcomes (PSO) in the 3-point scale of STRONG (3), MEDIUM (2) and LOW (1).

	PSO 1	PSO 2	PSO 3	PSO 4	PSO 5	PSO 6	PSO 7	PSO 8	PSO 9	PSO1 0
CO1	2	2	2	3	3	2	2	2	3	3
CO2	2	2	3	3	3	2	2	3	3	3
CO3	3	3	3	3	3	3	3	3	3	3
CO4	3	2	3	3	3	3	2	3	3	3
CO5	3	3	3	3	3	3	3	3	3	3
CO6	2	2	2	S	S	2	2	2	3	3
CO7	2	2	S	S	S	2	2	3	3	3
CO8	3	3	3	3	3	3	3	3	3	3
CO9	3	3	3	3	3	3	3	3	3	3
CO10	3	3	3	3	3	3	3	3	3	3

SEMESTER – II								
COURSE CODE	COURSE NAME	Category	L	Т	Р	Credits	Inst. Hours	Marks
24PPHDSEC3A	ADVANCED OPTICS	ELECTIVE	3	1	-	3	4	70

Knowledge of ray properties and wave nature of light

- To know the concepts behind polarization and could pursue research work on application aspects of laser
- > To impart an extensive understanding of fiber and non-linear optics
- > To study the working of different types of LASERS
- > To differentiate first and second harmonic generation
- > Learn the principles of magneto-optic and electro-optic effects and its applications

UNITS	Course Details
UNIT 1: POLARIZATION AND DOUBLE REFRACTION	Classification of polarization – Transverse character of light waves – Polarizer and analyzer – Malu's law – Production of polarized light – Wire grid polarizer and the polaroid – Polarization by reflection – Polarization by double refraction – Polarization by scattering – The phenomenon of double refraction – Normal and oblique incidence – Interference of polarized light: Quarter and half wave plates – Analysis of polarized light – Optical activity
UNIT II: LASERS	Basic principles – Spontaneous and stimulated emissions – Components of the laser – Resonator and lasing action – Types of lasers and its applications – Solid state lasers – Ruby laser – Nd:YAG laser – gas lasers – He-Ne laser – CO ₂ laser – Chemical lasers – HCl laser – Semiconductor laser
UNIT III: FIBER OPTICS	Introduction – Total internal reflection – The optical fiber – Glass fibers – The coherent bundle – The numerical aperture – Attenuation in optical fibers – Single and multi-mode fibers – Pulse dispersion in multimode optical fibers – Ray dispersion in multimode step index fibers – Parabolic-index fibers – Fiber-optic sensors: precision displacement sensor – Precision vibration sensor
UNIT IV: NON-LINEAR OPTICS	Basic principles – Harmonic generation – Second harmonic generation – Phase matching – Third harmonic generation – Optical mixing – Parametric generation of light – Self-focusing of light
UNIT V: MAGNETO- OPTICS AND ELECTRO- OPTICS	Magneto-optical effects – Zeeman effect – Inverse Zeeman effect – Faraday effect – Voigt effect – Cotton-mouton effect – Kerr magneto-optic effect – Electro-optical effects – Stark effect – Inverse stark effect – Electric double refraction – Kerr electro-optic effect – Pockels electro-optic effect
UNIT VI:	Expert Lectures, Online Seminars - Webinars on Industrial

PROFESSIONAL	Interactions/Visits, Competitive Examinations, Employable and
COMPONENTS	Communication Skill Enhancement, Social Accountability and
	Patriotism
	1. B. B. Laud, 2017, Lasers and Non – Linear Optics, 3 rd Edition,
	New Age International (P) Ltd.
	2. AjoyGhatak, 2017, Optics, 6th Edition, McGraw - Hill
	Education Pvt. Ltd.
	3. William T. Silfvast, 1996, Laser Fundamentals Cambridge
TEXT BOOKS	University Press, New York
	4. J. Peatros, Physics of Light and Optics, a good (and free!)
	electronic book
	5. B. Saleh, and M. Teich, Fundamentals of Photonics, Wiley-
	Interscience,
	1. F. S. Jenkins and H. E. White, 1981, Fundamentals of Optics,
	(4 th Edition), McGraw – Hill International Edition.
	2. Dieter Meschede, 2004, Optics, Light and Lasers, Wiley – VCH,
REFERENCE	Varley GmbH.
BOOKS	3. Lipson, S. G. Lipson and H. Lipson, 2011, Optical Physics, 4 th
	Edition, Cambridge University Press, New Delhi, 2011.
	4. Y. B. Band, Light and Matter, Wiley and Sons (2006)
	5. R. Guenther, Modern Optics, Wiley and Sons (1990)
	1. https://www.youtube.com/watch?v=WgzynezPiyc
	2. https://www.youtube.com/watch?v=ShQWwobpW60
	3. https://www.ukessays.com/essays/physics/fiber-optics-and-it-
WEB SOURCES	applications.php
	4. https://www.youtube.com/watch?v=0kEvr4DKGRI
	5. http://optics.byu.edu/textbook.aspx
Board of Studies Dat	
Duaru of Studies Da	に、 14・11・4143

At the end of the course, the student will be able to:

CO1	Discuss the transverse character of light waves and different polarization phenomenon	K1
CO2	Discriminate all the fundamental processes involved in laser devices and to analyze the design and operation of the devices	K2
CO3	Demonstrate the basic configuration of a fiber optic – communication system and advantages	K3, K4
CO4	Identify the properties of nonlinear interactions of light and matter	K4
CO5	Interpret the group of experiments which depend for their action on an applied magnetics and electric field	K5
K1 -	- Remember; K2 – Understand; K3 - Apply; K4 - Analyze; K5 - Evaluat	æ;

MAPPING WITH PROGRAM OUTCOMES:

1				-			,,			
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	3	3	3	2	3	3	3	3	3	3
C02	3	3	3	2	3	3	3	3	3	3
CO3	3	3	3	2	3	3	3	3	3	3
CO4	3	3	3	3	3	3	3	3	3	3
CO5	3	3	3	3	3	3	3	3	3	3

	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6	PSO7	PSO8	PSO9	PSO10
CO1	3	3	3	2	3	3	3	3	3	3
CO2	3	3	3	2	3	3	3	3	3	3
CO3	3	3	3	2	3	3	3	3	3	3
CO4	3	3	3	3	3	3	3	3	3	3
CO5	3	3	3	3	3	3	3	3	3	3

SEMESTER: II								
COURSE CODE	COURSE TITLE	Category	L	Т	Р	Credits	Inst. Hours	Marks
24PPHDSEC3B	QUANTUM FIELD THEORY	ELECTIVE	3	1	-	3	4	70

Prior exposure on fundamentals of Quantum mechanics and Special Relativity will be essential.

- To school the students about the analytical and numerical techniques of nonlinear dynamics.
- > To make the students understand the concepts of various coherent structures.
- > To train the students on bifurcations and onset of chaos.
- > To educate the students about the theory of chaos and its characterization.
- > To make the students aware of the applications of solitons, chaos and fractals.

UNITS	Course Details
UNIT I: SYMMETRY PRINCIPLES	Relativistic kinematics, relativistic waves, Klein-Gordon (KG) equation as a relativistic wave equation, treatment of the KG equation as a classical wave equation: its Lagrangian and Hamiltonian, Noether's theorem and derivation of energy-momentum and angular momentum tensors as consequence of Poincaré symmetry, internal symmetry and the associated conserved current.
UNIT II: QUANTIZATION OF KLEIN-GORDAN FIELD	Canonical quantization of the KG field, solution of KG theory in Schrödinger and Heisenberg pictures, expansion in terms of creation and annihilation operators, definition of the vacuum and N-particle eigenstates of the Hamiltonian, vacuum expectation values, propagators, spin and statistics of the KG quantum.
UNIT III: QUANTIZATION OF DIRAC FIELD	Review of Dirac equation and its quantization, use of anti- commutators, creation and destruction operators of particles and antiparticles, Dirac propagator, energy, momentum and angular momentum, spin and statistics of Dirac quanta.
UNIT IV: QUANTIZATION OF ELECTROMAGNETIC FIELDS	Review of free Maxwell's equations, Lagrangian, gauge transformation and gauge fixing, Hamiltonian, quantization in terms of transverse delta functions, expansion in terms of creation operators, spin, statistics and propagator of the photon.
UNIT V: PERTURBATIVE INTERACTION AT TREE LEVEL	Introduction to interacting quantum fields, Wick's Theorem, Feynman Diagram, Examples from quantum electrodynamics at the tree level: positron-electron and electron-electron scattering.

UNIT VI: PROFESSIONAI COMPONENTS	and Communication Skill Enhancement Social Accountability
TEXT BOOKS	 J. D. BjorkenandS. D. Drell, Relativistic Quantum Fields David An Introduction to Quantum Field Theory by M. Peskin and D. V. Schroeder Quantum Field theory: From Operators to Path Integrals, 2nd edition by Kerson Huang Quantum Field Theory by Mark Srednicki Quantum Field Theory by Claude Itzykson and Jean Bernard Zuber.
REFERENCE BOOKS	 V.B. Berestetskii,E.M.LifshitzandL.P.Pitaevskii,<i>QuantumElectrodyna</i> <i>mics</i> Introduction to the Theory of Quantized Fields by N. N. Bogoliubov and D. V. Shirkov (1959) Quantum Field Theory by L. H. Ryder (1984) Quantum Field Theory by L. S. Brown (1992) Quantum Field Theory: A Modern Introduction by M. Kaku (1993)
WEB SOURCES	1. https://homepages.dias.ie/ydri/QFTNOTES4v2.pdf 2. https://www.scirp.org/(S(i43dyn45teexjx455qlt3d2q))/reference/referencespapers.aspx?referenceid=2605249 3. https://archive.nptel.ac.in/courses/115/106/115106065/4 4. https://www.nhn.ou.edu/~milton/p6433/p6433.html 5. https://plato.stanford.edu/entries/quantum-field-theory/

At the end of the course, the student will be able to:

CO1	Understand the interconnection of Quantum Mechanics and Special Relativity	K1				
CO2	Enable the students to understand the method of quantization to various Field	K2				
CO3	Employ the creation and annihilation operators for quantization	K5				
CO4	Summarizes the interacting field, in quantum domain, and gives a discussion on how perturbation theory is used here.	K1, K3				
CO5	Understand the concept of Feynman diagram	K2				
K	K1 - Remember; K2 – Understand; K3 - Apply; K4 - Analyze; K5 - Evaluate;					

MAPPING WITH PROGRAM OUTCOMES:

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	3	3	3	2	3	2	3	3	2	3
CO2	3	3	3	2	3	3	3	3	2	3
CO3	3	3	3	2	3	2	3	3	2	3
CO4	3	3	3	2	3	3	3	3	2	3
CO5	3	3	3	2	3	3	3	3	2	3

	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6	PSO7	PSO8	PSO9	PSO10
CO1	3	3	3	2	3	2	3	3	2	3
CO2	3	3	3	2	3	3	3	3	2	3
CO3	3	3	3	2	3	2	3	3	2	3
CO4	3	3	3	2	3	3	3	3	2	3
CO5	3	3	3	2	3	3	3	3	2	3

SEMESTER – II								
COURSE CODE	COURSE TITLE	Category	L	Т	Р	Credits	Inst. Hours	Marks
24PPHDSEC4A	COMMUNICATION ELECTRONICS	ELECTIVE	3	1	-	3	4	70

Knowledge of Regions of electromagnetic spectrum and its characteristics

- To comprehend the transmission of electromagnetic waves thorough different types of antenna and also to acquire knowledge about the propagation of waves through earth's atmosphere and along the surface of the earth
- > To gain knowledge in the generation and propagation of microwaves
- To acquire knowledge about radar systems and its applications and also the working principle of colour television
- > To learn the working principle of fiber optics and its use in telecommunication
- > To understand the general theory and operation of satellite communication systems

UNITS	Course Details
UNIT I: ANTENNAS AND WAVE PROPAGATION	Radiation field and radiation resistance of short dipole antenna- grounded antenna-ungrounded antenna-antenna arrays-broadside and end side arrays-antenna gain-directional high frequency antennas-sky wave-ionosphere- Ecles and Larmor theory- Magnento ionic theory- ground wave propagation
UNIT II: MICROWAVES	Microwave generation—multicavity Klystron-reflex klystron- magnetron -travelling wave tubes (TWT) and other microwave tubes-MASER-Gunn diode-wave guides-rectangular wave guides- standing wave indicator and standing wave ratio(SWR)
UNIT III: RADAR AND TELEVISION	Elements of a radar system-radar equation-radar performance Factors radar transmitting systems-radar antennas-duplexers- radar receivers and indicators-pulsed systems-other radar systems-colour TV transmission and reception-colour mixing principle-colour picture tubes-Delta gun picture tube-PIL colour picture tube-cable TV, CCTV and theatre TV
UNIT IV: OPTICAL FIBER	Propagation of light in an optical fibre-acceptance angle- numerical aperture-step and graded index fibres-optical fibres as a cylindrical waveguide-wave guide equations-wave guide equations in step index fibres -fibre losses and dispersion-applications
UNIT V: SATELLITE COMMUNICATION	Orbital satellites-geostationary satellites-orbital patterns-satellite system link models-satellite system parameters-satellite system link equation link budget-INSAT communication satellites

UNIT VI:	Expert Lectures, Online Seminars - Webinars on Industrial							
PROFESSIONAL	Interactions/Visits, Competitive Examinations, Employable and							
COMPONENTS	Communication Skill Enhancement, Social Accountability and Patriotism							
TEXT BOOKS	 Handbook of Electronics by Gupta and Kumar, 2008 edition. Electronic communication systems – George Kennedy and Davis, Tata McGraw Hill, 4th edition, 1988. Taub and Schilling, principles of communication systems, second edition, Tata Mc Graw Hill (1991). M. Kulkarani, Microwave and radar engineering, Umesh Publications, 1998. Mono Chrome and colour television, R. R. Ghulathi 							
REFERENCE BOOKS	 Electronic communications – Dennis Roody and Coolen, Prentice Hall of India, IV edition, 1995. Wayne Tomasi, Advanced electronics communication systems, fourth edition, Prentice Hall of India, 1998 Dennis Roddy and Coolen, 1995, <i>Electronics communications</i>, Prentice Hall of India IV Edition. Wayne Tomasi, 1998 "Advanced Electronics communication System" 4thedition, Prentice Hall of India, 1998 S. Salivahanan, N. Suersh Kumar & A. Vallavaraj, 2009, Electronic Devices and Circuits, Tata McGraw-Hill Publishing Company Limited, New Delhi, Second Edition. 							
WEB SOURCES	 <u>https://www.geeksforgeeks.org/digital-electronics-logic-design-tutorials/</u> <u>https://www.polytechnichub.com/difference-analog-instruments-</u> 							

digital-instruments/
3. <u>http://nptel.iitm.ac.in/</u>
4. <u>http://web.ewu.edu/</u>
5. <u>http://nptel.iitm.ac.in/</u>

Board of Studies Date: 22.04.2024

At the end of the course, the student will be able to:

CO1 Discuss and compare the propagation of electromagnetic waves through sky and or earth's surface Evaluate the energy and power radiated by the different types of antenna	n K1, K5
CO2Compare and differentiate the methods of generation of microwaves analyze the propagation of microwaves through wave guides- discuss and compare the different methods of generation of microwaves	
CO3 Classify and compare the working of different radar systems- apply the principle of radar in detecting locating, tracking, and recognizing objects of various kinds a considerable distances – discuss the importance of radar in military- elaborate and compare the working of different picture tube	IT K3
CO4 Classify, discuss and compare the different types of optical fiber and also to justify the need of it-discover the use of optical fiber as wave guide	K1, K3
CO5 Explain the importance of satellite communication in our daily life-distinguish between orbital and geostationary satellites elaborate the linking of satellites with ground station on the earth	
K1 - Remember; K2 – Understand; K3 - Apply; K4 - Analyze; K5 - Evaluate;	

MAPPING WITH PROGRAM OUTCOMES:

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	3	3	3	1	2	2	3	2	1	3
CO2	3	3	3	1	2	2	3	2	1	3
CO3	3	3	3	1	2	2	3	2	1	3
CO4	3	3	3	1	2	2	3	2	1	3
CO5	3	3	3	1	2	2	3	2	1	3

	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6	PSO7	PSO8	PSO9	PSO10
CO1	3	3	3	1	2	2	3	2	1	3
CO2	3	3	3	1	2	2	3	2	1	3
CO3	3	3	3	1	2	2	3	2	1	3
CO4	3	3	3	1	2	2	3	2	1	3
CO5	3	3	3	1	2	2	3	2	1	3

SEMESTER – II								
COURSE CODE	COURSE TITLE	Category	L	Т	Р	Credits	Inst. Hours	Marks
24PPHDSEC4B	PLASMA PHYSICS	ELECTIVE	3	1		3	4	70

Fundamentals of Electricity and Magnetism, Electromagnetic theory, Maxwell's equation, Basic knowledge of electrical and electronics instrumentation.

Learning Objectives

> To explore the plasma universe by means of in-site and ground-based observations.

- > To understand the model plasma phenomena in the universe.
- > To explore the physical processes which occur in the space environment.

UNITS	Course Details
UNIT I: FUNDAMENTAL CONCEPTS OF PLASMA	Kinetic pressure in a partially ionized - mean free path and collision cross section - Mobility of charged particles - Effect of magnetic field on the mobility of ions and electrons-Thermal conductivity- Effect of magnetic field- Quasi- neutrality of plasma Debye shielding distance - Optical properties of plasma.
UNIT II: MOTION OF CHARGED PARTICLES IN ELECTRIC AND MAGNETIC FIELD	Particle description of plasma- Motion of charged particle in electrostatic field- Motion of charged particle in uniform magnetic field - Motion of charged particle in electric and magnetic fields- Motion of charged particle inhomogeneous magnetic field - Motion of charged particle in magnetic mirror confinement - motion of an electron in a time varying electric field-Magneto- hydrodynamics - Magneto-hydrodynamic equations – Condition for magneto hydrodynamic behaviour.
UNIT III: PLASMA OSCILLATIONS AND WAVES	Introduction, theory of simple oscillations - electron oscillation in a plasma – Derivations of plasma oscillations by using Maxwell's equation - Ion oscillation and waves in a magnetic field - thermal effects on plasma oscillations - Landau damping - Hydro magnetic waves - Oscillations in an electron beam.
UNIT IV: PLASMA DIAGNOSTICS TECHNIQUES	Single probe method - Double probe method - Use of probe technique for measurement of plasma parameters in magnetic field - microwave method - spectroscopic methodlaser as a tool for plasma diagnostics-X-ray diagnostics of plasma - acoustic method - conclusion.
UNIT V: APPLICATIONS OF PLASMA PHYSICS	Magneto hydrodynamic Generator - Basic theory - Principle of Working- Fuel in MHD Generator - Generation of Microwaves Utilizing High Density Plasma - Plasma Diode.
UNIT VI: PROFESSIONAL COMPONENTS	Expert Lectures, Online Seminars - Webinars on Industrial Interactions/Visits, Competitive Examinations, Employable and Communication Skill Enhancement, Social Accountability and Patriotism

	1. Plasma Physics- Plasma State of Matter - S. N.Sen,					
	PragatiPrakashan, Meerut.					
	2. Introduction to Plasma Physics-M. Uman					
	3. Krall, N. A., and A. W. Trivelpiece. Principles of Plasma					
	Physics. Berkeley, CA: San Francisco Press, 1986. ISBN:					
	9780911302585.Tanenbaum, B. S. Plasma Physics. New York,					
	NY: McGraw-Hill, 1967. ISBN: 9780070628120.					
TEXT BOOKS	4. Goldston, R. J., and P. H. Rutherford. Introduction to Plasma					
	Physics. Philadelphia, PA: IOP Publishing, 1995. ISBN:					
	9780750301831.					
	5. Hutchinson, I. H. Principles of Plasma Diagnostics. Cambridge,					
	UK: Cambridge University Press, 2005. ISBN:					
	9780521675741.					
	1. Chen, F. F. Introduction to Plasma Physics. 2nd ed. New York,					
	NY: Springer, 1984. ISBN: 9780306413322.					
	2. Introduction to Plasma Theory-D.R. Nicholson					
	3. Shohet, J. L. The Plasma State. San Diego, CA: Academic Press					
REFERENCE	Inc., 1971. ISBN: 9780126405507.					
BOOKS	4. Hazeltine, R. D., and F. L. Waelbroeck. The Framework of					
	Plasma Physics. Boulder, CO: Westview Press, 2004. ISBN:					
	9780813342139.					
	5. Huddlestone, R. H., and S. L. Leonard. Plasma Diagnostic					
	Techniques. San Diego, CA: Academic Press, 1965					
	1. <u>https://fusedweb.llnl.gov/Glossary/glossary.html</u>					
WEB SOURCES	2. <u>http://farside.ph.utexas.edu/teaching/plasma/lectures1/index.html</u>					
	3. <u>http://www.plasmas.org/</u>					
	4. <u>http://www.phy6.org/Education/whplasma.html</u> 5. <u>http://www.plasmas.org/resources.htm</u>					
Board of Studies Dat	e: 23.04.2024					

At the end of the course, the student will be able to:

CO1 Understand the collision, cross section of charged particles and to able to cuthe magnetic effect of ion and electrons in plasma state.	orrelate K1, K2
CO2Understand the plasma and learn the magneto-hydrodynamics concepts app plasma.	blied to K2
CO3 Explore the oscillations and waves of charged particles and thereby app Maxwell's equation to quantitative analysis of plasma.	ply the K1, K3
CO4 Analyze the different principle and techniques to diagnostics of plasma.	K2, K5
CO5 Learn the possible applications of plasma by incorporating various electric electronic instruments.	al and K4
K1 - Remember; K2 – Understand; K3 - Apply; K4 - Analyze; K5 - Evaluate;	

MAPPING WITH PROGRAM OUTCOMES:

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	3	3	2	1	1	2	1	2	3	3
CO2	3	3	2	1	1	2	1	2	3	3
CO3	3	3	2	2	1	2	1	3	3	3
CO4	3	3	3	2	1	2	1	3	3	3
CO5	3	3	3	2	1	2	1	3	3	3

	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6	PSO7	PSO8	PSO9	PSO10
CO1	3	3	2	1	1	2	1	2	3	3
CO2	3	3	2	1	1	2	1	2	3	3
CO3	3	3	2	2	1	2	1	3	3	3
CO4	3	3	3	2	1	2	1	3	3	3
CO5	3	3	3	2	1	2	1	3	3	3

SEMESTER – II								
COURSE CODE	COURSE TITLE	Category	L	Т	Р	Credits	Inst. Hours	Marks
24PPHEDC1	COMMUNICATION SYSTEMS	EXTRA DISCIPLINARY COURSE	3	1	-	2	4	70

Basic knowledge of regions of electromagnetic spectrum and Basic Electronics

- > To acquire knowledge in basics of communication
- > To get a thorough knowledge on transmission and reception of radio waves
- > To understand the different types of communication like radar, television, mobile, satellite and fibre optic.

UNITS	Course Details
	Communication – Introduction – Milestones in the History
UNIT I:	of communication – Types of Communication – Examples of
	Communication Systems – Elements of a Communication system –Basic
COMMUNICATION	terminologies used in Electronic Communication System - Frequency
FUNDAMENTALS	bandwidth of transmission - Electromagnetic spectrum –
	Propagation of electromagnetic waves.
UNITII:	Basic principles of Radar - Transmission and reception - Automatic
	tracking Radars - Elementary concepts of TV transmitter and receiver -
RADAR AND	Camera tube (Iconoscope) - Scanning Synchronization TV channels -
TELEVISION	Colour mixing principle (additive and subtractive) - transmission and
	reception of colour signals - Picture tube - Delta gun colour picture
	tube.
	Need for Mobile communication – Requirements of mobile
	communication - History of mobile communication - Properties of
	wireless medium - Radio propagation - Reflection, scattering and
UNIT III:	diffraction in propagation – Propagation coverage calculations – Cellula
MOBILE	structure – Frequency reuse – System architecture – Authentication centre
	- Home location register – Visiting location register – Equipment identify
COMMUNICATION	register - Base station system - Advantages And disadvantages of using
	cellular mobile system.
	Evolution and Growth of communication satellites – The satellite orbit –
UNIT IV:	Geostationary orbit – Linkages – Assignable satellite frequencies –
SATELLITE	Satellite construction or equipment on satellite – Special purpose satellites
COMMUNICATION	– Indian space centres and the Indian satellite systems.

UNIT V: FIBRE OPTIC COMMUNICATION	Introduction – Structure of optical fibres – Light propagation through fibres – Classification of optical fibres – Fabrication of optical fibres – Optical couplers, splicers and fibre sensors – Advantages of optical fibres – Application of fibre optic communications – Fibre optic communication systems.
UNIT VI:	Expert Lectures, Online Seminars - Webinars on Industrial
PROFESSIONAL	Interactions/Visits, Competitive Examinations, Employable and
COMPONENTS	Communication Skill Enhancement, Social Accountability and Patriotism

	1. Electronic communication Systems 3 rd edition - George						
	Kennedy, Tata Mc GRAW HILL Publishing company,1991						
	2. Hand book of Electronics - Gupta & Kumar, Pragati Prakashan,						
	2. Trand book of Electronics - Supra & Rumar, Fragati Frakashan, 2008.						
	3. Electronics fundamentals and applications - D. Chattopadhyay						
	and P. C. Rakshit, New Age International, 2008.						
	4. Basic Electronics Solid state - B. L. Theraja, S. Chand & Co.,						
	2006.						
TEXT BOOKS	5. Wireless and mobile communication – T. G. Palanivelu, PHI						
	Learning Pvt. Ltd, 2011.						
	6. Principles of Electronics – V.K. Mehta, S. Chand & Co, 11 th						
	edition, 2008.						
	7. Applied Electronics – A. Subramaniyam, National Publishing						
	House, 2 nd edition, 2003.						
	8. Monochrome and Colour Television- R.R. Gulati, New Age						
	International Pvt Ltd, 2002.						
	1. Electronic Communication 4 th edition - Dennis Roddy and John						
REFERENCE	Coolen, Prentice Hall of India, 2009.						
BOOKS	2. Communication Electronics - N. D. Deshpande, D. A.						
	Deshpande and P. K. Rangole, TMH, 2001.						
	1. NPTEL Electronics And Communication Engineering Video						
	Lecture						
WEB SOURCES	https://www.btechguru.com/coursesnptelelectronics-and-						
	<u>communication</u> - engineering						
	<u> </u>						
oard of Studies Date	e: 02.11.2023						
	-						

At the end of the course, the student will be able to:

CO Number	CO Statement	Knowled ge Level
CO1	Recall the concepts of various communication systems	\mathbf{K}_1
CO2	Outline the basic theories behind television, radar, satellite, mobile and fibre optic communication	K2
CO3	Demonstrate the working of communication systems	K 3
CO4	Analyse the problems and limitations related to communication systems	K 4
	K1 - Remember; K2 – Understand; K3 - Apply; K4 – Analyze	

SEMESTER – III								
COURSE CODE	COURSE TITLE	Category	L	Т	Р	Credits	Inst. Hours	Marks
24PPHCC5	QUANTUM MECHANICS – II	Core	4	1		5	5	70

Knowledge of postulates of Quantum mechanics, properties of Hermitian operators, ladder operators, degeneracy, angular momentum techniques and commutation rules

- > Formal development of the theory and the properties of angular momenta, both orbital and spin
- To familiarize the students to the crucial concepts of scattering theory such as partial wave analysis and Born approximation.
- Time-dependent Perturbation theory and its application to study of interaction of an atom with the electromagnetic field
- To give the students a firm grounding in relativistic quantum mechanics, with emphasis on Dirac equation and related concepts
- To introduce the concept of covariance and the use of Feynman graphs for depicting different interactions

UNITS	Course Details
	Scattering amplitude – Cross sections – Born approximation and its validity
UNIT 1:	- Scattering by a screened coulomb potential - Yukawa potential - Partial

SCATTERING	wave analysis – Scattering length and Effective range theory for s wave –
THEORY	Optical theorem – Transformation from centre of mass to laboratory frame.
	Time dependent perturbation theory - Constant and harmonic perturbations -
UNIT II:	Fermi Golden rule – Transition probability Einstein's A and B Coefficients –
PERTURBATION	Adiabatic approximation - Sudden approximation - Semi - classical
THEORY	treatment of an atom with electromagnetic radiation - Selection rules for
	dipole radiation
UNIT III:	Klein – Gordon Equation – Charge And Current Densities – Dirac Matrices –
RELATIVISTIC	Dirac Equation – Plane Wave Solutions – Interpretation Of Negative Energy
QUANTUM	States – Antiparticles – Spin of Electron – Magnetic Moment Of An Electron
MECHANICS	Due To Spin
UNIT IV:	Covariant form of Dirac Equation - Properties of the gamma matrices -
DIRAC	Traces - Relativistic invariance of Dirac equation - Probability Density -
EQUATION	Current four vector - Bilinear covariant - Feynman's theory of positron
	(Elementary ideas only without propagation formalism)

UNIT V:	Classical fields – Euler Lagrange equation – Hamiltonian formulation –										
CLASSICAL	Noether's theorem – Quantization of real and complex scalar fields –										
FIELDS AND	Creation, Annihilation and Number operators - Fock states - Second										
SECOND	Quantization of K-G field.										
QUANTIZATION											
UNIT VI:	Expert Lectures, Online Seminars - Webinars on Industrial										
PROFESSIONAL	Interactions/Visits, Competitive Examinations, Employable and										
COMPONENTS	Communication Skill Enhancement, Social Accountability and Patriotism										
TEXT BOOKS	 P. M. Mathews and K. Venkatesan, A Text book of Quantum Mechanics,2nd Edition,Tata McGraw-Hill, New Delhi, 2010. 										
	 Chatak and S. Lokanathan, Quantum Mechanics: Theory and Applications, 4th Edition, Macmillan India, New Delhi. 										
	3. Satya Prakash, Advanced Quantum Mechanics, Kedar Nath Ram Nath, 2019.										
	4. G. Aruldhas, Quantum Mechanics, 2nd Edition, Prentice-Hall of India, NewDelhi,2009										
	5. L. I. Schiff, Quantum Mechanics, 3rd Edition, International Student Edition, McGraw-Hill Kogakusha, Tokyo, 1968										
	6. V. Devanathan, Quantum Mechanics, 1st Edition, Narosa Publishing House, New Delhi, 2005.										
	 NouredineZettili, Quantum mechanics concepts and applications, 2nd Edition, Wiley, 2017 										
REFERENCE	1. P. A. M. Dirac, The Principles of Quantum Mechanics, 4th										
BOOKS	Edition, Oxford University Press, London, 1973.										
	2. B.K.Agarwal & HariPrakash, Quantum Mechanics, 7th reprint, PHI										
	Learning Pvt. Ltd., New Delhi, 2009.										
	3. Deep Chandra Joshi, Quantum Electrodynamics and Particle										
	Physics,1 st edition,I.K.International Publishing house Pvt.Ltd., 2006										

	4. E. Merzbacher, Quantum Mechanics, 2nd edition, John Wiley and
	Sons, New York, 1970
WEB SOURCES	1. <u>https://ocw.mit.edu/courses/physics/8-05-quantum-physics-ii-fall-</u>
	2013/lecture notes/MIT8_05F13_Chap_09.pdf
	2. http://www.thphys.nuim.ie/Notes/MP463/MP463_Ch1.pdf
	3. http://hep.itp.tuwien.ac.at/~kreuzer/qt08.pdf
	4. https://www.cmi.ac.in/~govind/teaching/rel-qm-rc13/rel-qm-notes-
	gk.pdf
	5. https://web.mit.edu/dikaiser/www/FdsAmSci.pdf
	Board of Studies Date : 23.04.2024

At the end of the course the student will be able to:

CO1	Analyse the differences, implications and descriptions of the different methodologies applied in the study of scattering to evaluate total scattering cross - section	K1					
CO2	Discuss Time-dependent Perturbation theory and its application to study of interaction of an atom with the electromagnetic field	K2,K3					
CO3	Discuss the relativistic quantum mechanical equations namely, Klein-Gordon and Dirac equations and the phenomena accounted by them like electron spin and magnetic moment	K1, K4					
CO4	Introduce the concept of covariance and the use of Feynman graphs for depicting different interactions	K1, K3					
CO5	Demonstrate an understanding of field quantization and the explanation of the scattering matrix.	К5					
	K1 - Remember; K2 – Understand; K3 - Apply; K4 - Analyze; K5 – Evaluate						

MAPPING WITH PROGRAM OUTCOMES:

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	3	3	3	3	3	3	3	3	3	3
CO2	3	3	2	3	3	3	3	3	3	3
CO3	3	2	2	3	3	2	3	3	3	3
CO4	2	1	1	3	3	1	2	2	3	3
CO5	2	1	1	3	3	2	2	2	3	3

	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6	PSO7	PSO8	PSO9	PSO10
CO1	3	3	3	3	3	3	3	3	3	3
CO2	3	3	2	3	3	3	3	3	3	3
CO3	3	2	2	3	3	2	3	3	3	3
CO4	2	1	1	3	3	1	2	2	3	3
CO5	2	1	1	3	3	2	2	2	3	3

COURSE CODE	CC	DURSE TITLE	Category	L	Т	Р	Credits	Inst. Hours	Marks
24PPHCC6	COND	ENSED MATTER PHYSICS	Core	4	1		5	5	70
	·	Pre-Requi			•	·			
Basic knowledge	of atomic	physics, quantum mec		stati	stica	l mec	chanic	s.	
To describ	<u></u>	Learning Ot crystal structures, sym	-	o dif	forer	tioto	diffor	ant trun	
distinguish ➤ Outline dif	ly assess ning solid fferent ty n of con	pes of magnetic materi cepts of superconduct	als and exp	lain t	he u	nderl	lying p	ohenom	
			Course	Deta	ils				
UNIT I: CRYSTAL PHY	YSICS	Types of lattices - Miller indices – Symmetry elements and allowed rotations - Simple crystal structures – Atomic Packing Factor- Crystal diffraction - Bragg's law – Scattered Wave Amplitude - Reciprocal Lattice (sc, bcc, fcc). Structure and properties of liquid crystals. Diffraction Conditions - Laue equations - Brillouin zone - Structure factor - Atomic form factor - Inert gas crystals - Cohesive energy of ionic crystals - Madelung constant - Types of crystal binding (general ideas).							
UNIT II: LATTICI DYNAMIC	E	Lattice with two atom Group and phase velo Phonon momentum - theory of lattice heat c processes.	ocities - Qu Inelastic s	antiz	zatioi ring	n of by p	lattice honor	vibrati 1s - Del	ons - oye's
UNIT III THEORY (METALS A SEMICONDUC	OF ND	Free electron gas in the Wiedemann-Franz semiconductors - B Semiconductors - Inter- Dependence - Mobility - Hall effect - Fermi methods in Fermi surf	law - B loch theor rinsic carri ty - Impurit surfaces a	and em - er co ty con and c	theo Kr oncer nduct onstr	ory conig ntrati tivity ructio	of : -Penn on – ' v – Im on - F	metals ey moo Temper purity s Experim	and del - ature tates ental

UNIT IV: MAGNETISM	Diamagnetism - Quantum theory of paramagnetism - Rare earth ion - Hund's rule - Quenching of orbital angular momentum - Adiabatic demagnetization - Quantum theory of ferromagnetism - Curie point - Exchange integral - Heisenberg's interpretation of Weiss field - Ferromagnetic domains - Bloch wall - Spin waves - Quantization - Magnons - Thermal excitation of magnons - Curie temperature and susceptibility of ferrimagnets - Theory of antiferomagnetism - Neel temperature.
-----------------------	--

WEB SOURCES effect – Critical field – Critical current - Entropy and heat capacity • Energy gap - Microwave and infrared properties - Type I and II Superconductivity * Energy gap - Microwave and infrared properties - Type I and II Superconductivity * Energy gap - Microwave and infrared properties - Type I and II Superconductivity * Einstein Condensation * Cooper pairs – Bardeen Cooper Schrieffer (BCS) Theory – BCS to Bootpe - Einstein Condensation (BEC) regime- Nature of paring and condensation of Fermions. Single particle tunneling – Josephsontunneling - DC and AC Josephson effects - High temperature Superconductors – SQUIDS. * Expert Lectures, Online Seminars - Webinars on Industrial Interactions/Visits, Competitive Examinations, Employable and Communication Skill Enhancement, Social Accountability and Patriotism * 1. C. Kittel, 1996, Introduction to SolidState Physics, 7th Edition, Wiley, New York. * 2. Rita John, Solid State Physics, Macmillan India, New Delhi. * 4. M. Ali Omar, 1974, Elementary SolidState Physics, 2 nd Edition, Viva Book, New Delhi. * 5. H. P. Myers, 1998, Introductory SolidState Physics, 2 nd Edition, OxfordUniversity Press, London. * 6. C. Ross-Innes and E. H. Rhoderick, 1976, Introduction to Superconductivity, Pergamon, Oxford. * 7. S. J. P. Srivastava, 2001, Elements of Solid State Physics, Prentice-Hall of India, New Delhi.		Experimental facts: Occurrence - Effect of magnetic fields - Meissner								
UNIT V: SuperconductivitySuperconductors. Theoretical Explanation: Thermodynamics of super conducting transition - London equation - Coherence length - Isotope effect - Cooper pairs - Bardeen Cooper Schrieffer (BCS) Theory - BCS to Bose e - Einstein Condensation (BEC) regime - Nature of paring and condensation of Fermions. Single particle tunneling - Josephsontunneling - DC and AC Josephson effects - High temperature Superconductors - SQUIDS.UNIT VI: PROFESSIONAL COMPONENTSExpert Lectures, Online Seminars - Webinars on Industrial Interactions/Visits, Competitive Examinations, Employable and Communication Skill Enhancement, Social Accountability and PatriotismTEXT BOOKS1. C. Kittel, 1996, Introduction to SolidState Physics, 7th Edition, Wiley, New York.TEXT BOOKS1. C. Kittel, 1996, Introduction to SolidState Physics, 7th Edition, Wiley, New York.REFERENCE BOOKS2. Rita John, Solid State Physics, Macmillan India, New Delhi. 4. M. Ali Omar, 1974, Elementary SolidState Physics, 2th Edition, Viva Book, New Delhi.REFERENCE BOOKS3. J. S. Blakemore, 1974, Solid state Physics, 2th Edition, Viva Book, New Delhi.REFERENCE BOOKS3. J. M. Ziman, 1971, Principles of the Theory of Solids, CambridgeUniversity Press, Oxford.S. J. P. Srivastava, 2001, Elements of Solid State Physics, Prentice- Hall of India, New Delhi.WEB SOURCES1. http://www.physics.uiuc.edu/research/electronicstructure/ 389/389-cal.htmlCondense 2. http://www.nationalegegraphic.org/encyclopedia/ magnetism/										
UNIT V: SuperconductivityTheoretical Explanation: Thermodynamics of super conducting transition - London equation - Coherence length - Isotope effect - Cooper pairs - Bardeen Cooper Schrieffer (BCS) Theory - BCS to Bose - Einstein Condensation (BEC) regime - Nature of paring and condensation of Fermions. Single particle tunneling - Josephsontunneling - DC and AC Josephson effects - High temperature Superconductors - SQUIDS.UNIT VI: PROFESSIONAL COMPONENTSExpert Lectures, Online Seminars - Webinars on Industrial Interactions/Visits, Competitive Examinations, Employable and Communication Skill Enhancement, Social Accountability and PatriotismTEXT BOOKS1. C. Kittel, 1996, Introduction to SolidState Physics, 7th Edition, Wiley, New York. 2. Rita John, Solid State Physics, Tata Mc-GrawHill Publication. 3. A. J. Dekker, SolidState Physics, Macmillan India, New Delhi.REFERENCE BOOKS1. J. S. Blakemore, 1974, Solid State Physics, 2nd Edition, Viva Book, New Delhi.REFERENCE BOOKS3. J. M. Ziman, 1971, Principles of the Theory of Solids, CambridgeUniversity Press, Oxford.WEB SOURCES1. http://www.cmmp.ucl.ac.uk/%7Eaph/Teaching/3C25/ index.htmlWEB SOURCES1. http://www.nationalecographic.org/encyclopedia/ magnetism/										
Superconductivity transition - London equation - Coherence length - Isotope effect - Cooper pairs - Bardeen Cooper Schrieffer (BCS) Theory - BCS to Bose - Einstein Condensation (BEC) regime- Nature of paring and condensation of Fermions. Single particle tunneling - Josephsontunneling - DC and AC Josephson effects - High temperature Superconductors - SQUIDS. UNIT VI: PROFESSIONAL COMPONENTS Expert Lectures, Online Seminars - Webinars on Industrial Interactions/Visits, Competitive Examinations, Employable and Communication Skill Enhancement, Social Accountability and Patriotism TEXT BOOKS 1. C. Kittel, 1996, Introduction to SolidState Physics, 7 th Edition, Wiley, New York. TEXT BOOKS 1. C. Kittel, 1996, Introduction to SolidState Physics, 7 th Edition, Wiley, New York. REFERENCE BOOKS 1. J. S. Blakemore, 1974, Elementary SolidState Physics, 2 nd Edition, Viva Book, New Delhi. 1. J. S. Blakemore, 1974, Solid state Physics, 2 nd Edition, Viva Book, New Delhi. 1. J. S. Blakemore, 1974, Solid state Physics, 2 nd Edition, OxfordUniversity Press, London. 4. C. Ross-Innes and E. H. Rhoderick, 1976, Introduction to Superconductivity, Pergamon, Oxford. 3. J. M. Ziman, 1971, Principles of the Theory of Solids, CambridgeUniversity Press, London. 4. C. Ross-Innes and E. H. Rhoderick, 1976, Introduction to Superconductivity, Pergamon, Oxford. 5. J. P. Srivastava, 2001, Elements of Solid State Physics, Prentice- Hall of India, New Delhi. 1. http://www.entationalgeographic.org/encyclopedia/magnetism/ 3. https://www.brationalgeographic.org/encyclopedia/magnetism/	LINIT V.	1								
Cooper pairs – Bardeen Cooper Schnetter (BCS) Interfy – BCS to Bose – Einstein Condensation (BEC) regime- Nature of paring and condensation of Fermions. Single particle tunneling – Josephsontunneling - DC and AC Josephson effects - High temperature Superconductors – SQUIDS. UNIT VI: Expert Lectures, Online Seminars - Webinars on Industrial Interactions/Visits, Competitive Examinations, Employable and Communication Skill Enhancement, Social Accountability and Patriotism TEXT BOOKS 1. C. Kittel, 1996, Introduction to SolidState Physics, 7 th Edition, Wiley, New York. 2. Rita John, Solid State Physics, Tata Mc-GrawHill Publication. 3. A. J. Dekker, SolidState Physics, Macmillan India, New Delhi. TEXT BOOKS 4. M. Ali Omar, 1974, Elementary SolidState Physics, 2 nd Edition, Viva Book, New Delhi. 1. J. S. Blakemore, 1974, Solid state Physics, 2 nd Edition, W.B. Saunder, Philadelphia 2. H. M. Rosenburg, 1993, The SolidState, 3 rd Edition, OxfordUniversity Press, Oxford. 3. J. M. Ziman, 1971, Principles of the Theory of Solids, CambridgeUniversity Press, London. 4. C. Ross-Innes and E. H. Rhoderick, 1976, Introduction to Superconductivity, Pergamon, Oxford. S. J. P. Srivastava, 2001, Elements of Solid State Physics, Prentice-Hall of India, New Delhi. 1. http://www.chrup.ucl.ac.uk/%7Eaph/Teaching/3C25/ WEB SOURCES index.html 3. https://www.hbritannica.com/science/crystal		transition - London equation - Coherence length - Isotope effect -								
condensation of Fermions. Single particle tunneling – Josephsontunneling - DC and AC Josephson effects - High temperature Superconductors – SQUIDS. UNIT VI: PROFESSIONAL COMPONENTS Expert Lectures, Online Seminars - Webinars on Industrial Interactions/Visits, Competitive Examinations, Employable and Communication Skill Enhancement, Social Accountability and Patriotism TEXT BOOKS 1. C. Kittel, 1996, Introduction to SolidState Physics, 7 th Edition, Wiley, New York. TEXT BOOKS 2. Rita John, Solid State Physics, Tata Mc-GrawHill Publication. 3. A. J. Dekker, SolidState Physics, Macmillan India, New Delhi. 4. M. Ali Omar, 1974, Elementary SolidState Physics, - Principles and Applications, Addison - Wesley 5. H. P. Myers, 1998, Introductory SolidState Physics, 2 nd Edition, Viva Book, New Delhi. 1. J. S. Blakemore, 1974, Solid state Physics, 2 nd Edition, W.B. Saunder, Philadelphia 2. H. M. Rosenburg, 1993, The SolidState, 3 rd Edition, OxfordUniversity Press, Oxford. 3. J. M. Ziman, 1971, Principles of the Theory of Solids, CambridgeUniversity Press, London. 4. C. Ross-Innes and E. H. Rhoderick, 1976, Introduction to Superconductivity, Pergamon, Oxford. 5. J. P. Srivastava, 2001, Elements of Solid State Physics, Prentice- Hall of India, New Delhi. 1. http://www.mationalgeographic.org/encyclopedia/magnetism/ WEB SOURCES 1. http://www.nationalgeographic.org/encyclopedia/magnetism/	Superconductivity	Cooper pairs – Bardeen Cooper Schrieffer (BCS) Theory – BCS to Bose								
Josephsontunneling - DC and AC Josephson effects - High temperature Superconductors - SQUIDS. UNIT VI: PROFESSIONAL COMPONENTS Expert Lectures, Online Seminars - Webinars on Industrial Interactions/Visits, Competitive Examinations, Employable and Communication Skill Enhancement, Social Accountability and Patriotism TEXT BOOKS 1. C. Kittel, 1996, Introduction to SolidState Physics, 7 th Edition, Wiley, New York. TEXT BOOKS 2. Rita John, Solid State Physics, Tata Mc-GrawHill Publication. 3. A. J. Dekker, SolidState Physics, Macmillan India, New Delhi. 4. M. Ali Omar, 1974, Elementary SolidState Physics, 2 nd Edition, Viva Book, New Delhi. TEXT BOOKS 5. H. P. Myers, 1998, Introductory SolidState Physics, 2 nd Edition, Viva Book, New Delhi. REFERENCE BOOKS 1. J. S. Blakemore, 1974, Solid state Physics, 2 nd Edition, W.B. Saunder, Philadelphia 2. H. M. Rosenburg, 1993, The SolidState, 3 rd Edition, OxfordUniversity Press, Oxford. 3. J. M. Ziman, 1971, Principles of the Theory of Solids, CambridgeUniversity Press, London. 4. C. Ross-Innes and E. H. Rhoderick, 1976, Introduction to Superconductivity, Pergamon, Oxford. 5. J. P. Srivastava, 2001, Elements of Solid State Physics, Prentice- Hall of India, New Delhi. 1. http://www.enmp.ucl.ac.uk/%TEaph/Teaching/3C25/ index.html 3. https://www.britannica.com/science/crystal 4. https://www.nationalgeographic.org/encyclopedia/ magnetism/ 3. https://www.hritannica.com/science/crystal										
Superconductors – SQUIDS. UNIT VI: PROFESSIONAL COMPONENTS Expert Lectures, Online Seminars - Webinars on Industrial Interactions/Visits, Competitive Examinations, Employable and Communication Skill Enhancement, Social Accountability and Patriotism TEXT BOOKS 1. C. Kittel, 1996, Introduction to SolidState Physics, 7 th Edition, Wiley, New York. TEXT BOOKS 1. C. Kittel, 1996, Introduction to SolidState Physics, 7 th Edition, Wiley, New York. TEXT BOOKS 1. C. Kittel, 1996, Introductors of SolidState Physics, 7 th Edition, Wiley, New York. TEXT BOOKS 1. J. S. Dekker, SolidState Physics, Macmillan India, New Delhi. TEXT BOOKS 1. J. S. Blakemore, 1974, Elementary SolidState Physics, 2 nd Edition, Viva Book, New Delhi. REFERENCE BOOKS 1. J. S. Blakemore, 1974, Solid state Physics, 2 nd Edition, W.B. Saunder, Philadelphia 2. H. M. Rosenburg, 1993, The SolidState, 3 nd Edition, OxfordUniversity Press, Oxford. 3. J. M. Ziman, 1971, Principles of the Theory of Solids, CambridgeUniversity Press, London. REFERENCE BOOKS 3. J. M. Ziman, 1971, Principles of Solid State Physics, Prentice- Hall of India, New Delhi. MEB SOURCES 1. http://www.physics.uiuc.edu/research/electronicstructure/ 389/389-cal.html 4. https://www.britannica.com/science/crystal 4. https://www.nationalgeographic.org/encyclopedia/magnetism/										
UNIT VI: PROFESSIONAL COMPONENTS Expert Lectures, Online Seminars - Webinars on Industrial Interactions/Visits, Competitive Examinations, Employable and Communication Skill Enhancement, Social Accountability and Patriotism TEXT BOOKS 1. C. Kittel, 1996, Introduction to SolidState Physics, 7 th Edition, Wiley, New York. TEXT BOOKS 2. Rita John, Solid State Physics, Tata Mc-GrawHill Publication. 3. A. J. Dekker, SolidState Physics, Macmillan India, New Delhi. 4. M. Ali Omar, 1974, Elementary SolidState Physics, - Principles and Applications, Addison - Wesley 5. H. P. Myers, 1998, Introductory SolidState Physics, 2 nd Edition, Viva Book, New Delhi. 1. J. S. Blakemore, 1974, Solid state Physics, 2 nd Edition, W.B. Saunder, Philadelphia 2. H. M. Rosenburg, 1993, The SolidState, 3 nd Edition, OxfordUniversity Press, London. 4. C. Ross-Innes and E. H. Rhoderick, 1976, Introduction to Superconductivity, Pergamon, Oxford. 5. J. P. Srivastava, 2001, Elements of Solid State Physics, Prentice- Hall of India, New Delhi. 1. http://www.cmmp.ucl.ac.uk/%7Eaph/Teaching/3C25/ index.html 3. https://www.britannica.com/science/crystal 4. https://www.nationalgeographic.org/encyclopedia/ magnetism/										
WINT VI: Interactions/Visits, Competitive Examinations, Employable and Communication Skill Enhancement, Social Accountability and Patriotism TEXT BOOKS 1. C. Kittel, 1996, Introduction to SolidState Physics, 7th Edition, Wiley, New York. TEXT BOOKS 2. Rita John, Solid State Physics, Tata Mc-GrawHill Publication. 3. A. J. Dekker, SolidState Physics, Tata Mc-GrawHill Publication. 3. A. J. Dekker, SolidState Physics, Macmillan India, New Delhi. 4. M. Ali Omar, 1974, Elementary SolidState Physics, 2nd Edition, Viva Book, New Delhi. 1. I. J. S. Blakemore, 1974, Solid State Physics, 2nd Edition, W.B. Saunder, Philadelphia 2. H. M. Rosenburg, 1993, The SolidState, 3rd Edition, OxfordUniversity Press, Oxford. 3. J. M. Ziman, 1971, Principles of the Theory of Solids, CambridgeUniversity Press, London. 4. C. Ross-Innes and E. H. Rhoderick, 1976, Introduction to Superconductivity, Pergamon, Oxford. 5. J. P. Srivastava, 2001, Elements of Solid State Physics, Prentice-Hall of India, New Delhi. WEB SOURCES 1. http://www.cmmp.ucl.ac.uk/%7Eaph/Teaching/3C25/ index.html 3. https://www.nationalgeographic.org/encyclopedia/magnetism/										
PROFESSIONAL COMPONENTS Communication Skill Enhancement, Social Accountability and Patriotism TEXT BOOKS 1. C. Kittel, 1996, Introduction to SolidState Physics, 7 th Edition, Wiley, New York. TEXT BOOKS 2. Rita John, Solid State Physics, Tata Mc-GrawHill Publication. 3. A. J. Dekker, SolidState Physics, Macmillan India, New Delhi. 4. M. Ali Omar, 1974, Elementary SolidState Physics – Principles and Applications, Addison - Wesley 5. H. P. Myers, 1998, Introductory SolidState Physics, 2 nd Edition, Viva Book, New Delhi. 1. J. S. Blakemore, 1974, Solid State Physics, 2 nd Edition, Viva Book, New Delhi. 2. H. M. Rosenburg, 1993, The SolidState, 3 rd Edition, OxfordUniversity Press, Oxford. 3. J. M. Ziman, 1971, Principles of the Theory of Solids, CambridgeUniversity Press, London. 4. C. Ross-Innes and E. H. Rhoderick, 1976, Introduction to Superconductivity, Pergamon, Oxford. 5. J. P. Srivastava, 2001, Elements of Solid State Physics, Prentice- Hall of India, New Delhi. 1. http://www.physics.uiuc.edu/research/electronicstructure/ 389/389-cal.html 2. http://www.cmmp.ucl.ac.uk/%7Eaph/Teaching/3C25/ index.html 3. https://www.britannica.com/science/crystal 4. https://www.nationalgeographic.org/encyclopedia/ magnetism/	UNIT VI:									
COMPONENTS Patriotism Patriotism 1. C. Kittel, 1996, Introduction to SolidState Physics, 7th Edition, Wiley, New York. TEXT BOOKS 2. Rita John, Solid State Physics, Tata Mc-GrawHill Publication. 3. A. J. Dekker, SolidState Physics, Macmillan India, New Delhi. 4. M. Ali Omar, 1974, Elementary SolidState Physics – Principles and Applications, Addison - Wesley 5. H. P. Myers, 1998, Introductory SolidState Physics, 2nd Edition, Viva Book, New Delhi. 1. J. S. Blakemore, 1974, Solid state Physics, 2nd Edition, W.B. Saunder, Philadelphia 2. H. M. Rosenburg, 1993, The SolidState, 3rd Edition, OxfordUniversity Press, Oxford. 3. J. M. Ziman, 1971, Principles of the Theory of Solids, CambridgeUniversity Press, London. 4. C. Ross-Innes and E. H. Rhoderick, 1976, Introduction to Superconductivity, Pergamon, Oxford. 5. J. P. Srivastava, 2001, Elements of Solid State Physics, Prentice- Hall of India, New Delhi. 1. http://www.cmmp.ucl.ac.uk/%7Eaph/Teaching/3C25/ index.html 3. https://www.britannica.com/science/crystal 4. https://www.nationalgeographic.org/encyclopedia/ magnetism/ 3. https://www.britannica.com/science/crystal										
Wiley, New York.TEXT BOOKS2. Rita John, Solid State Physics, Tata Mc-GrawHill Publication. 3. A. J. Dekker, SolidState Physics, Macmillan India, New Delhi.TEXT BOOKS4. M. Ali Omar, 1974, Elementary SolidState Physics – Principles and Applications, Addison - Wesley 5. H. P. Myers, 1998, Introductory SolidState Physics, 2 nd Edition, Viva Book, New Delhi.I. J. S. Blakemore, 1974 , Solid state Physics, 2 nd Edition, W.B. Saunder, Philadelphia 2. H. M. Rosenburg, 1993, The SolidState, 3 rd Edition, OxfordUniversity Press, Oxford.REFERENCE BOOKS3. J. M. Ziman, 1971, Principles of the Theory of Solids, CambridgeUniversity Press, London.4. C. Ross-Innes and E. H. Rhoderick, 1976, Introduction to Superconductivity, Pergamon, Oxford.5. J. P. Srivastava, 2001, Elements of Solid State Physics, Prentice- Hall of India, New Delhi.1. http://www.physics.uiuc.edu/research/electronicstructure/ 389/389-cal.html2. http://www.cnationalgeographic.org/encyclopedia/ magnetism/	COMPONENTS									
Wiley, New York.TEXT BOOKS2. Rita John, Solid State Physics, Tata Mc-GrawHill Publication. 3. A. J. Dekker, SolidState Physics, Macmillan India, New Delhi.TEXT BOOKS4. M. Ali Omar, 1974, Elementary SolidState Physics – Principles and Applications, Addison - Wesley 5. H. P. Myers, 1998, Introductory SolidState Physics, 2 nd Edition, Viva Book, New Delhi.I. J. S. Blakemore, 1974 , Solid state Physics, 2 nd Edition, W.B. Saunder, Philadelphia 2. H. M. Rosenburg, 1993, The SolidState, 3 rd Edition, OxfordUniversity Press, Oxford.REFERENCE BOOKS3. J. M. Ziman, 1971, Principles of the Theory of Solids, CambridgeUniversity Press, London.4. C. Ross-Innes and E. H. Rhoderick, 1976, Introduction to Superconductivity, Pergamon, Oxford.5. J. P. Srivastava, 2001, Elements of Solid State Physics, Prentice- Hall of India, New Delhi.1. http://www.physics.uiuc.edu/research/electronicstructure/ 389/389-cal.html2. http://www.cnationalgeographic.org/encyclopedia/ magnetism/		1. C. Kittel, 1996, Introduction to SolidState Physics, 7th Edition,								
TEXT BOOKS3. A. J. Dekker, SolidState Physics, Macmillan India, New Delhi.4. M. Ali Omar, 1974, Elementary SolidState Physics – Principles and Applications, Addison - Wesley5. H. P. Myers, 1998, Introductory SolidState Physics, 2 nd Edition, Viva Book, New Delhi.7. J. S. Blakemore, 1974, Solid state Physics, 2 nd Edition, W.B. Saunder, Philadelphia8. REFERENCE BOOKS3. J. M. Ziman, 1971, Principles of the Theory of SolidS, CambridgeUniversity Press, London.4. C. Ross-Innes and E. H. Rhoderick, 1976, Introduction to Superconductivity, Pergamon, Oxford.5. J. P. Srivastava, 2001, Elements of Solid State Physics, Prentice- Hall of India, New Delhi.7. http://www.physics.uiuc.edu/research/electronicstructure/ 389/389-cal.html7. http://www.nationalgeographic.org/encyclopedia/ magnetism/	TEXT BOOKS	Wiley, New York.								
TEXT BOOKS4. M. Ali Omar, 1974, Elementary SolidState Physics – Principles and Applications, Addison - Wesley 5. H. P. Myers, 1998, Introductory SolidState Physics, 2nd Edition, Viva Book, New Delhi.I. J. S. Blakemore, 1974, Solid state Physics, 2nd Edition, W.B. Saunder, PhiladelphiaREFERENCE BOOKS2. H. M. Rosenburg, 1993, The SolidState, 3rd Edition, OxfordUniversity Press, Oxford.REFERENCE BOOKS3. J. M. Ziman, 1971, Principles of the Theory of Solids, CambridgeUniversity Press, London.4. C. Ross-Innes and E. H. Rhoderick, 1976, Introduction to Superconductivity, Pergamon, Oxford.5. J. P. Srivastava, 2001, Elements of Solid State Physics, Prentice- Hall of India, New Delhi.WEB SOURCES1. http://www.cmmp.ucl.ac.uk/%7Eaph/Teaching/3C25/ index.htmlWEB SOURCES3. https://www.nationalgeographic.org/encyclopedia/ magnetism/										
and Applications, Addison - Wesley 5. H. P. Myers, 1998, Introductory SolidState Physics, 2 nd Edition, Viva Book, New Delhi. 1. J. S. Blakemore, 1974, Solid state Physics, 2 nd Edition, W.B. Saunder, Philadelphia 2. H. M. Rosenburg, 1993, The SolidState, 3 rd Edition, OxfordUniversity Press, Oxford. 3. J. M. Ziman, 1971, Principles of the Theory of Solids, CambridgeUniversity Press, London. 4. C. Ross-Innes and E. H. Rhoderick, 1976, Introduction to Superconductivity, Pergamon, Oxford. 5. J. P. Srivastava, 2001, Elements of Solid State Physics, Prentice- Hall of India, New Delhi. 1. http://www.physics.uiuc.edu/research/electronicstructure/ 389/389-cal.html 2. http://www.cmmp.ucl.ac.uk/%7Eaph/Teaching/3C25/ index.html 3. https://www.britannica.com/science/crystal 4. https://www.nationalgeographic.org/encyclopedia/ magnetism/										
S. H. P. Myers, 1998, Introductory SolidState Physics, 2 nd Edition, Viva Book, New Delhi. 1. J. S. Blakemore, 1974, Solid state Physics, 2 nd Edition, W.B. Saunder, Philadelphia 2. H. M. Rosenburg, 1993, The SolidState, 3 rd Edition, OxfordUniversity Press, Oxford. 3. J. M. Ziman, 1971, Principles of the Theory of Solids, CambridgeUniversity Press, London. 4. C. Ross-Innes and E. H. Rhoderick, 1976, Introduction to Superconductivity, Pergamon, Oxford. 5. J. P. Srivastava, 2001, Elements of Solid State Physics, Prentice- Hall of India, New Delhi. 1. http://www.physics.uiuc.edu/research/electronicstructure/ 389/389-cal.html 2. http://www.cmmp.ucl.ac.uk/%7Eaph/Teaching/3C25/ index.html 3. https://www.nationalgeographic.org/encyclopedia/ magnetism/										
Viva Book, New Delhi.1. J. S. Blakemore, 1974, Solid state Physics, 2 nd Edition, W.B. Saunder, Philadelphia2. H. M. Rosenburg, 1993, The SolidState, 3 rd Edition, OxfordUniversity Press, Oxford.3. J. M. Ziman, 1971, Principles of the Theory of Solids, CambridgeUniversity Press, London.4. C. Ross-Innes and E. H. Rhoderick, 1976, Introduction to Superconductivity, Pergamon, Oxford.5. J. P. Srivastava, 2001, Elements of Solid State Physics, Prentice- Hall of India, New Delhi.1. <a "="" crystal="" href="http://www.physics.uiuc.edu/research/electronicstructure/http://www.britannica.com/science/crystal WEB SOURCESWEB SOURCES										
REFERENCE BOOKS1. J. S. Blakemore, 1974 , Solid state Physics, 2 nd Edition, W.B. Saunder, Philadelphia2. H. M. Rosenburg, 1993, The SolidState, 3 rd Edition, OxfordUniversity Press, Oxford.3. J. M. Ziman, 1971, Principles of the Theory of Solids, CambridgeUniversity Press, London.4. C. Ross-Innes and E. H. Rhoderick, 1976, Introduction to Superconductivity, Pergamon, Oxford.5. J. P. Srivastava, 2001, Elements of Solid State Physics, Prentice- Hall of India, New Delhi.1. <a %7eaph="" 3c25="" <="" a="" href="http://www.physics.uiuc.edu/research/electronicstructure/WEB SOURCESWEB SOURCESA. https://www.nationalgeographic.org/encyclopedia/magnetism/										
REFERENCE BOOKS2. H. M. Rosenburg, 1993, The SolidState, 3 rd Edition, OxfordUniversity Press, Oxford.3. J. M. Ziman, 1971, Principles of the Theory of Solids, CambridgeUniversity Press, London.4. C. Ross-Innes and E. H. Rhoderick, 1976, Introduction to Superconductivity, Pergamon, Oxford.5. J. P. Srivastava, 2001, Elements of Solid State Physics, Prentice- Hall of India, New Delhi.1. http://www.physics.uiuc.edu/research/electronicstructure/ 389/389-cal.html2. http://www.cmmp.ucl.ac.uk/%7Eaph/Teaching/3C25/ index.html3. https://www.britannica.com/science/crystal4. https://www.nationalgeographic.org/encyclopedia/ magnetism/		·								
REFERENCE BOOKS OxfordUniversity Press, Oxford. 3. J. M. Ziman, 1971, Principles of the Theory of Solids, CambridgeUniversity Press, London. 4. C. Ross-Innes and E. H. Rhoderick, 1976, Introduction to Superconductivity, Pergamon, Oxford. 5. J. P. Srivastava, 2001, Elements of Solid State Physics, Prentice- Hall of India, New Delhi. 1. http://www.physics.uiuc.edu/research/electronicstructure/ 389/389-cal.html 2. http://www.cmmp.ucl.ac.uk/%7Eaph/Teaching/3C25/ index.html 3. https://www.britannica.com/science/crystal 4. https://www.nationalgeographic.org/encyclopedia/ magnetism/										
REFERENCE BOOKS 3. J. M. Ziman, 1971, Principles of the Theory of Solids, CambridgeUniversity Press, London. 4. C. Ross-Innes and E. H. Rhoderick, 1976, Introduction to Superconductivity, Pergamon, Oxford. 5. J. P. Srivastava, 2001, Elements of Solid State Physics, Prentice- Hall of India, New Delhi. 1. http://www.physics.uiuc.edu/research/electronicstructure/ 389/389-cal.html 2. http://www.cmmp.ucl.ac.uk/%7Eaph/Teaching/3C25/ index.html 3. https://www.britannica.com/science/crystal 4. https://www.nationalgeographic.org/encyclopedia/ magnetism/										
BOOKS CambridgeUniversity Press, London. 4. C. Ross-Innes and E. H. Rhoderick, 1976, Introduction to Superconductivity, Pergamon, Oxford. 5. J. P. Srivastava, 2001, Elements of Solid State Physics, Prentice- Hall of India, New Delhi. 1. <a href="http://www.physics.uiuc.edu/research/electronicstructure/
389/389-cal.html">http://www.physics.uiuc.edu/research/electronicstructure/ 389/389-cal.html WEB SOURCES index.html 3. https://www.britannica.com/science/crystal 4. https://www.nationalgeographic.org/encyclopedia/magnetism/										
4. C. Ross-Innes and E. H. Rhoderick, 1976, Introduction to Superconductivity, Pergamon, Oxford. 5. J. P. Srivastava, 2001, Elements of Solid State Physics, Prentice- Hall of India, New Delhi. 1. <u>http://www.physics.uiuc.edu/research/electronicstructure/ 389/389-cal.html</u> 2. <u>http://www.cmmp.ucl.ac.uk/%7Eaph/Teaching/3C25/ index.html</u> 3. <u>https://www.britannica.com/science/crystal</u> 4. <u>https://www.nationalgeographic.org/encyclopedia/ magnetism/</u>										
Superconductivity, Pergamon, Oxford. 5. J. P. Srivastava, 2001, Elements of Solid State Physics, Prentice-Hall of India, New Delhi. 1. http://www.physics.uiuc.edu/research/electronicstructure/389/389-cal.html WEB SOURCES index.html 2. http://www.cmmp.ucl.ac.uk/%7Eaph/Teaching/3C25/index.html 3. https://www.britannica.com/science/crystal 4. https://www.nationalgeographic.org/encyclopedia/magnetism/	BOOKS	•								
5. J. P. Srivastava, 2001, Elements of Solid State Physics, Prentice-Hall of India, New Delhi. 1. http://www.physics.uiuc.edu/research/electronicstructure/389/389-cal.html WEB SOURCES inttp://www.cmmp.ucl.ac.uk/%7Eaph/Teaching/3C25/index.html 3. https://www.britannica.com/science/crystal 4. https://www.nationalgeographic.org/encyclopedia/magnetism/										
Hall of India, New Delhi. 1. http://www.physics.uiuc.edu/research/electronicstructure/389/389-cal.html WEB SOURCES 2. http://www.cmmp.ucl.ac.uk/%7Eaph/Teaching/3C25/index.html 3. https://www.britannica.com/science/crystal 4. https://www.nationalgeographic.org/encyclopedia/magnetism/										
WEB SOURCES 389/389-cal.html 2. http://www.cmmp.ucl.ac.uk/%7Eaph/Teaching/3C25/index.html										
WEB SOURCES 2. http://www.cmmp.ucl.ac.uk/%7Eaph/Teaching/3C25/index.html		1. http://www.physics.uiuc.edu/research/electronicstructure/								
WEB SOURCES index.html 3. https://www.britannica.com/science/crystal 4. https://www.nationalgeographic.org/encyclopedia/ magnetism/										
 3. <u>https://www.britannica.com/science/crystal</u> 4. <u>https://www.nationalgeographic.org/encyclopedia/ magnetism/</u> 										
4. https://www.nationalgeographic.org/encyclopedia/ magnetism/	WEB SOURCES									
Board of Studies Date : 23.04.2024										

At the end of the course, the student will be able to:

CO1	Student will be able to list out the crystal systems, symmetries allowed in a system and also the diffraction techniques to find the crystal structure	K1						
CO2	Students will be able to visualize the idea of reciprocal spaces, Brillouin Zone and their extension to band theory of solids.	K1, K2						
CO3	Student will be able to comprehend the heat conduction in solids	К3						
CO4	Student will be able to generalize the electronic nature of solids from band theories.	K3, K4						
CO5	Student can compare and contrast the various types of magnetism and conceptualize the idea of superconductivity.	К5						
K1 - Re	K1 - Remember; K2 – Understand; K3 - Apply; K4 - Analyze; K5 – Evaluate							

MAPPING WITH PROGRAM OUTCOMES:

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	3	2	3	2	2	2	2	2	2	2
CO2	3	2	3	2	3	2	3	3	2	3
CO3	3	3	3	2	3	2	3	3	2	3
CO4	2	2	2	2	2	2	2	2	2	3
CO5	2	2	2	2	2	2	2	2	2	3

	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6	PSO7	PSO8	PSO9	PSO10
CO1	3	2	3	2	2	2	2	2	2	2
CO2	3	2	3	2	3	2	3	3	2	3
CO3	3	3	3	2	3	2	3	3	2	3
CO4	2	2	2	2	2	2	2	2	2	3
CO5	2	2	2	2	2	2	2	2	2	3

SEMESTER : III										
COURSE CODE	COURSE TITLE	Category	L	Т	Р	Credits	Inst. Hours	Marks		
24PPHCC7	ELECTROMAGNETIC THEORY	Core	4	1	-	5	5	70		

Different coordinate systems, Laplace's equation, conducting & non-conducting medium, basic definitions in magnetism, propagation of electromagnetic waves, plasma

- To acquire knowledge about boundary conditions between two media and the technique of method of separation of variables
- > To understand Biot–Savart's law and Ampere's circuital law
- To comprehend the physical ideas contained in Maxwell's equations, Coulomb & Lorentz gauges, conservation laws
- To assimilate the concepts of propagation, polarization, reflection and refraction of electromagnetic waves
- > To grasp the concept of plasma as the fourth state of matter

UNITS	Course Details
UNIT I: ELECTROSTATICS	Boundary value problems and Laplace equation – Boundary conditions and uniqueness theorem – Laplace equation in three dimensions – Solution in Cartesian and spherical polar coordinates – Examples of solutions for boundary value problems: Point charge in the presence of (i) grounded conducting sphere (ii) a charged insulated and conducting sphere. Polarization and displacement vectors - Boundary conditions - Dielectric sphere in a uniform field – Molecular polarizability and electrical susceptibility – Electrostatic energy in the presence of dielectric – Multipole expansion.
UNIT II: MAGNETOSTATICS	Biot-Savart's Law - Ampere's law - Magnetic vector potential and magnetic field of a localized current distribution - Magnetic moment, force and torque on a current distribution in an external field - Magneto static energy - Magnetic induction and magnetic field in macroscopic media - Boundary conditions - Uniformly magnetized sphere.

UNIT III: MAXWELL EQUATIONS	Faraday's laws of Induction - Maxwell's displacement current - Maxwell's equations - Vector and scalar potentials - Gauge invariance - Wave equation and plane wave solution- Coulomb and Lorentz gauges - Energy and momentum of the field - Poynting's theorem - Lorentz force - Conservation laws for a system of charges and electromagnetic fields.
UNIT IV: WAVE PROPAGATION	 Plane waves in non-conducting media - Linear and circular polarization, reflection, and refraction at a plane interface - Waves in a conducting medium - Propagation of waves in a rectangular waveguide. Inhomogeneous wave equation and retarded potentials - Radiation from a localized source - Oscillating electric dipole
UNIT V: ELEMENTARY PLASMA PHYSICS	The Boltzmann Equation - Simplified magneto-hydrodynamic equations - Electron plasma oscillations - The Debye shielding problem - Plasma confinement in a magnetic field - Magneto-hydrodynamic waves - Alfven waves and magnetosonic waves.
UNIT VI: PROFESSIONAL COMPONENTS	Expert Lectures, Online Seminars - Webinars on Industrial Interactions/Visits, Competitive Examinations, Employable and Communication Skill Enhancement, Social Accountability and Patriotism
TEXT BOOKS	 D. J. Griffiths, 2002, Introduction to Electrodynamics, 3rd Edition, Prentice-Hall of India, New Delhi. J. R. Reitz, F. J. Milford and R. W. Christy, 1986, Foundations of Electromagnetic Theory, 3rd edition, Narosa Publishing House, New Delhi. J. D. Jackson, 1975, Classical Electrodynamics, Wiley Eastern Ltd. New Delhi. J. A. Bittencourt, 1988, Fundamentals of Plasma Physics, Pergamon Press, Oxford. Gupta, Kumar and Singh, Electrodynamics, S. Chand & Co., New Delhi
REFERENCE BOOKS	 W. Panofsky and M. Phillips, 1962, Classical Electricity and Magnetism, Addison Wesley, London. J. D. Kraus and D. A. Fleisch, 1999, Electromagnetics with Applications, 5th Edition, WCB McGraw-Hill, New York. B. Chakraborty, 2002, Principles of Electrodynamics, Books and Allied, Kolkata. P. Feynman, R. B. Leighton and M. Sands, 1998, The Feynman Lectures on Physics, Vols. 2, Narosa Publishing House, New Delhi. Andrew Zangwill, 2013, Modern Electrodynamics, Cambridge University Press, USA.

	 <u>http://www.plasma.uu.se/CED/Book/index.html</u> <u>http://www.thphys.nuim.ie/Notes/electromag/frame-notes.html</u> <u>http://www.thphys.nuim.ie/Notes/em-topics/em-topics.html</u>
WEB SOURCES	4. <u>http://dmoz.org/Science/Physics/Electromagnetism/Courses_and_</u> <u>Tutorials/</u>
	5. <u>https://www.cliffsnotes.com/study-guides/physics/electricity-and-magnetism/electrostatics</u>
	Board of Studies Date : 23.04.2024

At the end of the course the student will be able to:

CO1	Solve the differential equations using the Laplace equation and to find solutions	K1,					
	for boundary value problems	K5					
CO2	Use Biot-Savart's law and Ampere circuital law to find the magnetic induction &	K2,					
	magnetic vector potential for various physical problems	K3					
CO3	Apply Maxwell's equations to describe how electromagnetic field behaves in	K3					
	different media	KJ					
CO4	Apply the concept of propagation of EM waves through waveguides in optical	K3,					
	fiber communications and also in radar installations, calculate the transmission and	K3, K4					
	reflection coefficients of electromagnetic waves	174					
CO5	Investigate the interaction of ionized gases with self-consistent electric and	K5					
	magnetic fields	INJ					
K1 - Remember; K2 – Understand; K3 - Apply; K4 - Analyze; K5 – Evaluate							

MAPPING WITH PROGRAM OUTCOMES:

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	3	3	3	1	2	2	3	3	1	3
CO2	3	3	3	1	2	2	3	3	1	3
CO3	3	3	3	1	2	2	3	3	1	3
CO4	3	3	3	1	2	2	3	3	1	3
CO5	3	3	3	1	2	2	3	3	1	3

	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6	PSO7	PSO8	PSO9	PSO10
CO1	3	3	3	1	2	2	3	3	1	3
CO2	3	3	3	1	2	2	3	3	1	3
CO3	3	3	3	1	2	2	3	3	1	3
CO4	3	3	3	1	2	2	3	3	1	3
CO5	3	3	3	1	2	2	3	3	1	3

COURSE: THI	COURSE: THIRD SEMESTER - CORE PRACTICAL III											
COURSE CODE	COURSE TITLE	Category	L	Т	Р	Credits	Inst. Hours	Marks				
24PPHCCQ3	CORE PRACTICAL III	Core	-	-	8	4	8	60				

Fundamentals of digital principles

Learning Objectives

- To understand the theory and working of Microprocessor, Microcontroller and their applications
- > To understand computational physics

Course Details

(ANY TWELVE EXPERIMENTS)

- 1. Microprocessor Programs -8-bit addition and subtraction, multiplication and division
- 2. Microprocessor Programs -Sum of a set of N data (8-bit number), picking up the smallest and largest number in an array. Sorting in ascending and descending order
- 3. Microprocessor Programs -Code conversion (8-bit number): a) Binary to BCDb) BCD to binary
- 4. Microprocessor Programs -Interfacing of 8-bit R / 2R ladder DAC (IC 741) Wave form generation Square, Rectangular, Triangular, Saw tooth and Sine waves
- 5. Microprocessor Programs -Interfacing of DC stepper motor Clockwise, Anticlockwise, Angular movement and Wiper action
- 6. Microcontroller Programs- to find the biggest number and smallest number
- 7. Microcontroller Programs to arrange numbers in Ascending and Descending
- 8. Microcontroller Programs-Counters Interface
- 9. Microcontroller Programs- Analog to digital and Digital to Analog Interface
- 10. Miscibility measurements using Ultrasonic diffraction method
- 11. Construction of Schmitt Trigger circuit using IC555 for a given hysteresisapplication as a squarer
- 12. Determination of Numerical Apertures and acceptance angle of Optical fiber using Laser source.
- 13. C programs

i) Numerical Differentiation by Fourth order Runge Kutta methodii) Numerical integration by Simpson 1/3 Rule

14. C programs

	i) Numerical Differentiation by Trapezoidal Rule
	ii) Numerical integration by Simpson 3/8 Rule
15.	C Programs-Finding Roots of Polynomial-Newton Raphson method
16. Determina	ation of bond length, bond angle, and dihedral angle of an organic molecule
	using Gaussian 09 software
	1. Douglas V. Hall, Microprocessors and Interfacing programming and
	Hardware, Tata Mc Graw Hill Publications (2008)
	2. Muhammad Ali Mazidi, Janice GillispieMazidi, Rolin D. Mckinlay,
	The 8051 Microcontroller and Embedded Systems, Pearson Education
TEVT	(2008).
TEXT BOOKS	3. V. Vijayendran, 2005, Fundamentals of Microprocessor-8085", 3rd
DOORS	Edition S.VisvanathanPvt, Ltd.
	4. The 8085 Microprocessor, Architecture, Programming and Interfacing
	– K.Udaya Kumar, S. Uma Shankar, Pearson
	5. Fundamentals of Microprocessors and Microcontrollers - B. Ram,
	Dhanpat Rai Publications
	1. W. A. Tribel, Avtar Singh, "The 8086/8088 Microprocessors:
	Programming, Interfacing, Software, Hardware and Applications",
	Prentice-Hall of India, New Delhi.
	2. Microprocessor and Its Application - S. Malarvizhi, Anuradha
	Agencies Publications
REFERENCE	3. Microprocessor Architecture, Program And Its Application With 8085
BOOKS	- R.S. Gaonkar, New Age International (P) Ltd
DOOMS	4. Barry B. Brey, 1995, The Intel Microprocessors 8086/8088, 80186,
	80286, 80386 and 80486, 3rd Edition, Prentice- Hall of India, New
	Delhi.
	5. J. Uffrenbeck, "The 8086/8088 Family-Design, Programming and
	Interfacing, Software, Hardware and Applications", Prentice-Hall of
	India, New Delhi.

At the end of the course, the student will be able to:

CO1	Develop the programming skills of Microprocessor	K5
CO2	Appreciate the applications of Microprocessor programming	K3
CO3	Understand the structure and working of 8085 microprocessor and apply it.	K1, K3
CO4	Acquire knowledge about the interfacing peripherals with 8085 microprocessor.	K1, K4
CO5	Acquire knowledge about the interfacing 8051 microcontroller with various peripherals.	K1, K4
K	1 - Remember; K2 – Understand; K3 - Apply; K4 - Analyze; K5 - Evaluat	e;

MAPPING WITH PROGRAM OUTCOMES:

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	2	2	2	3	3	2	2	1	3	2
CO2	2	1	3	3	3	2	2	1	3	2
CO3	3	3	1	3	3	2	2	1	3	2
CO4	3	3	3	3	3	2	2	1	3	2
CO5	3	3	3	3	3	2	2	1	3	2

Map course outcomes (CO) for each course with program outcomes (PO) and program specific outcomes (PSO) in the 3-point scale of STRONG (3), MEDIUM (2) and LOW (1).

	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6	PSO7	PSO8	PSO9	PSO10
CO1	2	2	2	3	3	2	2	1	3	2
CO2	2	1	3	3	3	2	2	1	3	2
CO3	3	3	1	3	3	2	2	1	3	2
CO4	3	3	3	3	3	2	2	1	3	2
CO5	3	3	3	3	3	2	2	1	3	2

SEMESTER – III								
COURSE CODE	COURSE TITLE	Category	L	Т	Р	Credits	Inst. Hours	Marks
24PPHDSEC5A	MICROPROCESSOR 8085AND MICROCONTROLLER 8051 (Industry Module)	ELECTIVE	3	1	-	3	4	70

Pre-Requisites	
Knowledge of number systems and binary operations	
Learning Objectives	
8085A and to the m	estanding of the architecture and functioning of microprocessor ethods of interfacing I/O devices and memory to microprocessor programming and applications and the architecture and instruction ler 8051
UNITS	Course Details
UNIT I: 8085 PROGRAMMING, PERIPHERAL DEVICES AND THEIR INTERFACING	Instruction set - Addressing modes - Programming techniques - Memory mapped I/O scheme - I/O mapped I/O scheme - Memory and I/O interfacing- Data transfer schemes - Interrupts of 8085 - Programmable peripheral interface (PPI) - Control group and control word- Programmable DMA controller - Programmable interrupt controller – Programmable communication interface - Programmable counter /interval timer.
UNIT II: 8085 INTERFACING APPLICATIONS	Seven segment display interface - Interfacing of Digital to Analog converter and Analog to Digital converter - Stepper motor interface - Measurement of electrical quantities –Voltage and current) Measurement of physical quantities (Temperature an strain).
UNIT III: 8051 MICROCONTROLLER HARDWARE	Introduction – Features of 8051 – 8051 Microcontroller Hardware: Pin- out 8051, Central Processing Unit (CPU), internal RAM, Internal ROM, Register set of 8051 – Memory organization of 8051 – Input/ Output pins, Ports and Circuits – External data memory and program memory: External program memory, External data memory.
UNIT IV: 8051 INSTRUCTION SET AND ASSEMBLY LANGUAGE PROGRAMMING	Addressing modes – Data moving (Data transfer) instructions: Instructions to Access external data memory, external ROM / program memory, PUSH and POP instructions, Data exchange instructions – Logical instructions: byte and bit level logical operations, Rotate and swap operations – Arithmetic instructions: Flags, Incrementing and decrementing, Addition, Subtraction, Multiplication and division, Decimal arithmetic – Jump and CALL instructions: Jump and Call program range, Jump, Call and subroutines – Programming.

UNIT V: INTERRUPT PROGRAMMING AND INTERFACING TO EXTERNAL WORLD	8051 Interrupts – Interrupt vector table – Enabling and disabling an interrupt – Timer interrupts and programming – Programming external hardware interrupts – Serial communication interrupts and programming – Interrupt priority in the 8051 : Nested interrupts, Software triggering of interrupt. LED Interface Seven segment display interface- Interfacing of Digital to Analog converter and Analog to Digital converter - Steppermotor interface - Measurement of electrical quantities – Voltage and current) Measurement of physical quantities(Temperature an strain).
UNIT VI: PROFESSIONAL COMPONENTS	Expert Lectures, Online Seminars - Webinars on Industrial Interactions/Visits, Competitive Examinations, Employable and Communication Skill Enhancement, Social Accountability and Patriotism
TEXT BOOKS	 A. NagoorKani, Microprocessors & Microcontrollers, RBA Publications (2009). A. P. Godse and D. A. Godse, Microprocessors, Technical Publications, Pune (2009). Ramesh Gaonkar, Microprocessor Architecture, Programming and Applications with 8085, Penram International Publishing (2013). B. Ram, Fundamentals of Microprocessors & Microcontrollers, DhanpatRai publications New Delhi (2016). V. Vijayendran, 2005, Fundamentals of Microprocessor-8085", 3rd Edition S.VisvanathanPvt, Ltd.
REFERENCE BOOKS	 Douglas V. Hall, Microprocessors and Interfacing programming and Hardware, Tata Mc Graw Hill Publications (2008) Muhammad Ali Mazidi, Janice GillispieMazidi, Rolin D. Mckinlay, The 8051 Microcontroller and Embedded Systems, Pearson Education (2008). Barry B. Brey, 1995, The Intel Microprocessors 8086/8088, 80186, 80286, 80386 and 80486, 3rd Edition, Prentice- Hall of India, New Delhi. J. Uffrenbeck, "The 8086/8088 Family-Design, Programming and Interfacing, Software, Hardware and Applications", Prentice-Hall of India, New Delhi. W. A. Tribel, Avtar Singh, "The 8086/8088 Microprocessors: Programming, Interfacing, Software, Hardware and Applications", Prentice-Hall of India, New Delhi.
WEB SOURCES	 <u>https://www.tutorialspoint.com/microprocessor/microprocessor</u> <u>8085_architecture.html</u> <u>http://www.electronicsengineering.nbcafe.in/peripheral-mapped-io- interfacing/</u> <u>https://www.geeksforgeeks.org/programmable-peripheral-interface- 8255/</u> <u>http://www.circuitstoday.com/8051-microcontroller</u> <u>https://www.elprocus.com/8051-assembly-language-programming/</u>

At the end of the course, the student will be able to:

Gain knowledge of architecture and working of 8085 microprocessor.			
Get knowledge of architecture and working of 8051 Microcontroller.	K1		
Be able to write simple assembly language programs for 8085A microprocessor.	K2, K3		
Able to write simple assembly language programs for 8051 Microcontroller.	K3, K4		
Understand the different applications of microprocessor and microcontroller.	K3, K 5		
	Get knowledge of architecture and working of 8051 Microcontroller. Be able to write simple assembly language programs for 8085A microprocessor. Able to write simple assembly language programs for 8051 Microcontroller. Understand the different applications of microprocessor and		

K1 - Remember; K2 – Understand; K3 - Apply; K4 - Analyze; K5 - Evaluate;

MAPPING WITH PROGRAM OUTCOMES:

Map course outcomes (CO) for each course with program outcomes (PO) and program specific outcomes (PSO) in the 3-point scale of STRONG (3), MEDIUM (2) and LOW (1).

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	2	3	3	3	3	1	1	1	1	1
CO2	2	1	1	1	1	1	1	1	1	1
CO3	3	3	3	3	3	1	1	1	1	1
CO4	3	3	3	3	3	1	1	1	1	1
CO5	3	3	3	3	3	1	1	1	1	1

	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6	PSO7	PSO8	PSO9	PSO10
CO1	2	3	3	3	3	1	1	1	1	1
CO2	2	1	1	1	1	1	1	1	1	1
CO3	3	3	3	3	3	1	1	1	1	1
CO4	3	3	3	3	3	1	1	1	1	1
CO5	3	3	3	3	3	1	1	1	1	1

SEMESTER:III								
COURSE CODE	COURSE TITLE	Category	L	Т	Р	Credits	Inst. Hours	Marks
24PPHDSEC5B	ADVANCED SPECTROSCOPY	ELECTIVE	3	1	-	3	4	70

Pre-Requisites

Basic knowledge of group theory, abstract thinking ability, lasers, chemical bonds and molecular structures

Learning Objectives

- Helps students understand and appreciate spectroscopy as a sufficiently broad field in which many sub disciplines exist.
- > Make them appreciate each of these specific techniques with numerous implementations.
- To realize the progress in this field that is rapid, resulting in improved instrument capabilities and an ever-widening range of applications.
- To apply group theory in spectroscopy to shed light on molecular symmetry and determine important physical parameters.

UNITS	CourseDetails
UNITI: MOLECULAR SPECTROSCOPY AND GROUP THEORY	Group axioms –subgroup, simple group, Abelian group, cyclic group, order of a group, class- Lagrange's theorem statement and proof - Symmetry operations and symmetry elements - Application: construction of group multiplication table (not character table) for groups of order 2, 3, cyclic group of order 4, noncyclic group of order 4 – reducible and irreducible representations- Unitary representations – Schur's lemmas – Great orthogonality theorem - point group -Simple applications : Symmetry operations of water and ammonia- Construction of character table for C_{2v} (water) and C_{3v} (ammonia) molecules
UNITII: LASER SPECTROSCOPY	Lasers as Spectroscopy Light sources – Special Characteristics of Laser emission- ultra short pulses- laser cooling -Single and multi- mode lasers- Laser tenability- Fluorescence spectroscopy with lasers- Laser Raman Spectroscopy – Non-linear Spectroscopy – Applications of Laser Spectroscopy in medical fields, materials science research
UNITIII: MOSSBAUER SPECTROSCOPY	Basic idea of Mossbauer spectroscopy - Principle- Mossbauer effect- Recoilless emission and absorption- Chemical shift -Effect of electric and magnetic fields – hyperfine interactions- instrumentation-Applications: understanding molecular and electronic structures
UNITIV: XRAY PHOTOELECTRON	Principle – XPS spectra and its interpretation- ECSA-EDAX- other forms of XPS – chemical shift - Applications : - stoichiometric analysis- electronic structure- XPES techniques used in astronomy,

SPECTROSCOPY	glass industries, paints and in biological research
UNITV: MOLECULA R MODELLING	Determination of force constants- force field from spectroscopic data-normal coordinate analysis of a simple molecule (H2O) – analyzing thermodynamic functions, partition functions, enthalpy, specific heat and related parameters from spectroscopic data-molecular modelling using data from various spectroscopic studies
UNIT VI: PROFESSIONA L COMPONENTS	Expert Lectures, Online Seminars - Webinars on Industrial Interactions/Visits, Competitive Examinations, Employable and Communication Skill Enhancement, Social Accountability and Patriotism
TEXT BOOKS	 William Kemp, 2019, Organic Spectroscopy (2nd Edition) MacMillan, Indian Edition. C N Banwell and McCash, 1994, Fundamentals of Molecular Spectroscopy, 4th Edition, Tata McGraw–Hill, New Delhi. D.N. Satyanarayana, 2001, <i>Vibrational Spectroscopy and</i> <i>Applications</i>, New Age International Publication. B.K. Sharma, 2015, <i>Spectroscopy</i>, Goel Publishing House Meerut. J M Hollas, 2002, Basic Atomic and Molecular Spectroscopy, Royal Society of Chemistry, RSC, Cambridge.
REFERENCE BOOKS	 Demtroder. W, Laser Spectroscopy: Basic concepts and Instrumentation, SpringerLink. B. P. Straughan and S. Walker, 1976, Spectroscopy Vol.I., Chapman and Hall, New York. J L McHale, 2008, Molecular Spectroscopy, Pearson Education India, New Delhi. David. L. Andrews, Introduction to Laser Spectroscopy, Springer, 2020 Kalsi.P.S, 2016, Spectroscopy of Organic Compounds (7th Edition) New Age International Publishers.
WEB SOURCES	 Fundamentals of Spectroscopy - Course (nptel.ac.in) <u>http://mpbou.edu.in/slm/mscche1p4.pdf</u> <u>https://onlinecourses.nptel.ac.in/noc20_cy08/preview</u> <u>https://www.coursera.org/lecture/spectroscopy/nmr-spectroscopy-introduction-XCWRu</u> <u>https://serc.carleton.edu/research_education/geochemsheets/techniques/mossbauer.html</u>

Board of Studies Date : 02.11.2023

At the end of the course, the student will be able to:

CO1	Comprehend set of operations associated with symmetry elements of a molecule, apply mathematical theory while working with symmetry operations. Apply mathematical theory while working with symmetry operations. To use group theory as a tool to characterize molecules.	K1, K2
CO2	Align with the recent advances in semiconductor laser technology combined sensitive spectroscopic detection techniques.	К3
CO3	Understand principle behind Mossbauer spectroscopy and apply the concepts of isomer shift and quadrupole splitting to analyse molecules.	K2, K3
CO4	Assimilate this XPES quantitative technique and the instrumentation associated with this, as applied in understanding surface of materials.	K3, K4
CO5	Employ IR and Raman spectroscopic data along with other data for structural investigation of molecules. Analyze thermodynamic functions and other parameters to evolve molecular models.	K5
K1	- Remember; K2 – Understand; K3 - Apply; K4 - Analyze; K5 - Evaluat	te;

MAPPING WITH PROGRAM OUTCOMES:

Map course outcomes (CO) for each course with program outcomes (PO) and program

specific outcomes (PSO) in the 3-point scale of STRONG (3), MEDIUM (2) and LOW (1).

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	3	3	2	2	3	3	3	3	3	2
CO2	2	2	2	3	3	3	2	3	3	2
CO3	2	2	3	3	3	3	3	2	3	3
CO4	3	2	3	3	2	3	3	3	3	2
CO5	3	2	3	3	3	3	3	3	3	3

	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6	PSO7	PSO8	PSO9	PSO10
CO1	3	3	2	2	3	3	3	3	3	2
CO2	2	2	2	3	3	3	2	3	3	2
CO3	2	2	3	3	3	3	3	2	3	3
CO4	3	2	3	3	2	3	3	3	3	2
CO5	3	2	3	3	3	3	3	3	3	3

SEMESTER	– III							
COURSE CODE	COURSE TITLE	Category	L	Т	Р	Credits	Inst. Hours	Marks
24PPHEDC2	SEWAGE AND WASTE WATER TREATMENT AND REUSE	EDC - II	2	1		2	3	70

Pre-Requisites

Basic knowledge of classification of sewage and solid waste and its harmful effects.

Learning Objectives

- > To acquire knowledge about various types of pollutants found in sewage and waste water.
- > To understand about the importance and need for sewage and waste treatment.
- > To comprehend the Principles and mechanism behind various treatment processes.
- > To grasp and explain the different methods used in treating sewage and waste water.
- > To Evaluate the effectiveness and efficiency of different treatments in removing pollutants.

UNITS	Course Details
UNIT I	Recovery & Reuse of water from Sewage and Waste water: Methods of
RECOVERY AND	water treatment - Flocculation -Sedimentation sedimentation with
REUSE OF	coagulation-Filtration method - vector control measures in industries -
WASTEWATER	chemical and biological methods of vector eradication
UNIT II: DISINFECTION	Introduction to disinfection and sterilization: Disinfectant- UV radiation-Chlorination - Antisepsis - Sterilant - Aseptic and sterile - Bacteriostatic and Bactericidal – factors affecting disinfection.
UNIT III: CHEMICAL DISINFECTION	Inroduction-Theory of Chemical Disinfection-Chlorination, other Chemical Methods – Chemical Disinfection Treatments Requiring - Electricity-Coagulation Agentsas pretreatment-Disinfection By- Products (DBPs)
UNIT IV: PHYSICAL DISINFECTION	Physical Disinfection: Introduction - Ultraviolet Radiation - Solar Disinfection - Heat Treatment -Filtration Methods - Distillation - Electrochemical Oxidation Water Disinfection by Microwave Heating
UNIT V CHALLENGES ON WASTEWATER TREATMENT AND REUSE	Challenges in recovery and reuse an overview – Evaluating the biological potency of waste water – Potential impacts on Microbial functions in waste water – Water reuse in Industries and its management case study

UNIT VI:	Expert Lectures, Online Seminars - Webinars on Industrial
PROFESSIONAL	Interactions/Visits, Competitive Examinations, Employable and
COMPONENTS	Communication Skill Enhancement, Social Accountability and Patriotism
	1. Drinking water and disinfection technique, Anirudhha Balachandra.
	CRC press (2013) 2. Design of Water and Wastewater Treatment Systems (CV-424/434),
	2. Design of water and wastewater freatment Systems (C v -424/434), Shashi Bushan, Jain Bros (2015(
	3. Integrated Water Resources Management, Sarbhukan M M, CBS
TEXT BOOKS	PUBLICATION (2013)
	4. C.S. Rao, Environmental Pollution Control Engineering, New Age
	International, 2007
	5. S.P. Mahajan, Pollution control in process industries, 27th Ed. Tata McGraw Hill Publishing Company Ltd., 2012.
	1. Handbook of Water and Wastewater Treatment Plant Operations,
	Frank. R Spellman, CRC Press, 2020
	2. Wastewater Treatment Technologies, Mritunjay Chaubey, Wiley,
	2021.
REFERENCE	3. Metcalf and Eddy, Wastewater Engineering, 4th ed., McGraw Hill
BOOKS	Higher Edu., 2002.
	4. W. Wesley Eckenfelder, Jr., Industrial Water Pollution Control, 2nd
	Edn., McGraw Hill Inc., 1989
	5. Lancaster, Green Chemistry: An Introductory Text, 2nd edition, RSC publishing, 2010.
	1. https://www.google.co.in/books/edition/Drinking_Water_Disinfectio
	nTechniques/HVbNBQAAQBAJ?hl=en
	2. <u>https://www.meripustak.com/Integrated-Solid-Waste-Management-</u>
	Engineering-Principles-And-Management-Issues-125648?
	3. https://www.meripustak.com&gclid=Cj0KCQjwuuKXBhCRARIsA
	<u>C-</u>
	gM0iVpismAJN93CHA1sX6NuNeOKLXfQJjxHCOVH3QXjJ1iAC
WEB SOURCES	<u>q30KofoaAmFsEALw_wcB</u>
	4. https://www.amazon.in/Design-Wastewater-Treatment-Systems-
	CV424/dp/B00IG2PI6K/ref=asc_df_B00IG2PI6K/?tag=googleshopmob
	21&linkCode=df0&hvadid=397013004690&hvpos=&hvnetw=g&hvran
	d=4351305881865063672&hvpone=&hvptwo=&hvqmt=&hvdev=m&h
	vdvcmdl=&hvlocint=&hvlocphy=9061971&hvtargid=pla-
	<u>890646066127&psc=1&ext_vrnc=hi</u>
	Board of Studies Date : 23.04.2024

COURSE OUTCOMES: At the end of the course, the student will be able to:

C01	Gain the knowledge in various pollutants found in sewage and waste water.	K1
CO2	Understand about the importance and need for sewage and waste treatment.	K5
CO3	Apply the Principles and mechanism behind various treatment processes.	K3
CO4	Explain the different methods used in treating sweage and waste water.	K4
CO5	Evaluate the effectiveness and efficiency of different treatments in removing pollutants.	К5
	K1 - Remember; K2 – Understand; K3 - Apply; K4 - Analyze; K5 - Evaluate;	

MAPPING WITH PROGRAM OUTCOMES:

Map course outcomes (**CO**) for each course with program outcomes (**PO**) and programspecific outcomes (**PSO**) in the 3-point scale of STRONG (3), MEDIUM (2) and LOW (1).

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	3	3	3	1	2	2	3	3	1	3
CO2	3	3	3	1	2	2	3	3	1	3
CO3	3	3	3	1	2	2	3	3	1	3
CO4	3	3	3	1	2	2	3	3	1	3
CO5	3	3	3	1	2	2	3	3	1	3

	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6	PSO7	PSO8	PSO9	PSO10
CO1	3	3	3	1	2	2	3	3	1	3
CO2	3	3	3	1	2	2	3	3	1	3
CO3	3	3	3	1	2	2	3	3	1	3
CO4	3	3	3	1	2	2	3	3	1	3
CO5	3	3	3	1	2	2	3	3	1	3

Subject Code	Subject Name	Category	L	Т	Р	Credits	Inst. Hours	Marks
24PPHCC8	Nuclear and Particle Physics	Core Course -XI	4	1	-	5	5	70

Pre-Requ	Pre-Requisites					
Knowledg	e of basic structure of atom and nucleus.					
Learning	Objectives					
	Introduces students to the different models of the nucleus in a chronological order					
	Imparts an in-depth knowledge on the nuclear force, experiments to study it and the types of nuclear reactions and their principles					
	Provides students with details of nuclear decay with relevant theories					
	Exposes students to the Standard Model of Elementary Particles and Higgs boson					

	NUCLEAR MODELS
UNIT I	Liquid drop model – Weizacker mass formula – Isobaric mass parabola –Mirror Pair - Bohr Wheeler theory of fission – shell model – spin-orbit coupling – magic numbers – angular momenta and parity of ground states – magnetic moment – Schmidt model – electric Quadrapole moment - Bohr and Mottelson collective model – rotational and vibrational bands.
	NUCLEAR FORCES
UNIT II	Nucleon – nucleon interaction – Tensor forces – properties of nuclear forces – ground state of deuteron – Exchange Forces - Meson theory of nuclear forces – Yukawa potential – nucleon- nucleon scattering – effective range theory – spin dependence of nuclear forces - charge independence and charge symmetry – isospin formalism.
	NUCLEAR REACTIONS
UNIT III	Kinds of nuclear reactions – Reaction kinematics – Q-value – Partial wave analysis of scattering and reaction cross section – scattering length – Compound nuclear reactions – Reciprocity theorem – Resonances – Breit Wigner one level formula – Direct reactions - Nuclear Chain reaction – four factor formula.
	NUCLEAR DECAY
UNIT IV	Beta decay – Continuous Beta spectrum – Fermi theory of beta decay - Comparative Half-life – Fermi Kurie Plot – mass of neutrino – allowed and forbidden decay — neutrino physics – Helicity - Parity violation - Gamma decay – multipole radiations – Angular Correlation - internal conversion – nuclear isomerism – angular momentum and parity selection rules.

	ELEMENTARY PARTICLES
	Classification of Elementary Particles – Types of Interaction and conservation laws – Families of elementary particles – Isospin – Quantum Numbers – Strangeness – Hypercharge and Quarks –SU (2) and SU (3) groups-Gell Mann matrices– Gell Mann Okuba Mass formula-Quark Model. Standard model of particle physics – Higgs boson.
TEXT BOOKS	D. C. Tayal – Nuclear Physics – Himalaya Publishing House (2011).
	2. K. S. Krane – Introductory Nuclear Physics – John Wiley & Sons (2008).
	3. R. Roy and P. Nigam – Nuclear Physics – New Age Publishers (1996).
	4. S. B. Patel – Nuclear Physics – An introduction – New Age International Pvt Ltd Publishers (2011).
	5. S. Glasstone – Source Book of Atomic Energy – Van Nostrand Reinhold Inc.,U.S 3rd Revised edition (1968).
	1. L. J. Tassie – The Physics of elementary particles – Prentice Hall Press (1973).
	2. H. A. Enge – Introduction to Nuclear Physics – Addison Wesley, Publishing Company. Inc. Reading. New York, (1974).
	3. Kaplan – Nuclear Physics – 1989 – 2nd Ed. – Narosa (2002).
	4. Bernard L Cohen – Concepts of Nuclear Physics – McGraw Hill Education (India) Private Limited; 1 edition (2001).
	5. B.L. Cohen, 1971, Concepts of Nuclear Physics, TMCH, New Delhi.
WEB	1. http://bubl.ac.uk/link/n/nuclearphysics.html
SOURCES	2. http://www.phys.unsw.edu.au/PHYS3050/pdf/Nuclear_Models.pdfhttp://www.scholarpedia .org/article/Nuclear_Forces
	3. https://www.nuclear-power.net/nuclear-power/nuclear-reactions/
	4. http://labman.phys.utk.edu/phys222core/modules/m12/nuclear_models.html
	5. https://www.ndeed.org/EducationResources/HighSchool/Radiography/radioactivedec ay.html

Course Outcomes (CO): On completion of the course, students should be able to

CO Number	CO Statement							
C01	Gain knowledge about the concepts of helicity, parity, angular correlation and internal conversion.	K ₁						
CO2	Demonstrate knowledge of fundamental aspects of the structure of the nucleus, radioactive decay, nuclear reactions and the interaction of radiation and matter.	K ₂						
CO3	Use the different nuclear models to explain different nuclear phenomena and the concept of resonances through Briet-Weigner single level formula	K ₃						
CO4	Analyze data from nuclear scattering experiments to identify different properties of the nuclear force.	K4						
CO5	Summarize and identify allowed and forbidden nuclear reactions based on conservation laws of the elementary particles	K5						

MAPPING WITH PROGRAM OUTCOMES:

Map course outcomes (CO) for each course with program outcomes (PO) and program specific outcomes (PSO) in the 3-point scale of STRONG (3), MEDIUM (2) and LOW (1).

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	3	3	2	2	2	2	2	2	2	2
CO2	3	3	2	2	1	2	1	2	2	2
CO3	3	3	1	2	1	2	1	1	2	2
CO4	3	3	2	3	2	3	2	2	3	3
CO5	3	3	2	3	2	3	2	3	3	3

	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6	PSO7	PSO8	PSO9	PSO10
CO1	3	3	2	2	2	2	2	2	2	2
CO2	3	3	2	2	1	2	1	2	2	2
CO3	3	3	1	2	1	2	1	1	2	2
CO4	3	3	2	3	2	3	2	2	3	3
CO5	3	3	2	3	2	3	2	3	3	3

Subject Code	Subject Name	Category	L	Т	Р	Credits	Inst. Hours	Marks
24PPHCC9	SPECTROSCOPY	Core Course - XII	4	1	-	4	5	70

Pre-Requ	isites
0	understanding of electromagnetic spectrum, mathematical abilities, knowledge of molecules, their bond nature, physical and chemical behaviour
Learning	Objectives
	To comprehend the theory behind different spectroscopic methods
	To know the working principles along with an overview of construction of different types of spectrometers involved
	To explore various applications of these techniques in R &D.
	Apply spectroscopic techniques for the qualitative and quantitative analysis of various chemical compounds.
П	Understand this important analytical tool

Understand this important analytical tool

MICROWAVE SPECTROSCOPY Rotational spectra of diatomic molecules - Rigid Rotor (Diatomic Molecules)-reduced mass - rotational constant - - Effect of isotopic substitution - Non rigid rotator - centrifugal UNIT – I distortion constant- Intensity of Spectral Lines- Polyatomic molecules – linear – symmetric asymmetric top molecules - Hyperfine structure and quadrupole moment of linear molecules - Instrumentation techniques – block diagram -Information Derived from Rotational Spectra- Stark effect- Problems. **UNIT II: INFRA-RED SPECTROSCOPY** Vibrations of simple harmonic oscillator – zero-point energy- Anharmonic oscillator – fundamentals, overtones and combinations- Diatomic Vibrating Rotator- PR branch – PQR branch- Fundamental modes of vibration of H2O and CO2 -Introduction to application of UNIT – II vibrational spectra- IR Spectrophotometer Instrumentation (Double Beam Spectrometer) – Fourier Transform Infrared Spectroscopy - Interpretation of vibrational spectra- remote analysis of atmospheric gases like N2O using FTIR by National Remote Sensing Centre (NRSC), India– other simple applications. UNIT III: RAMAN SPECTROSCOPY UNIT – III Theory of Raman Scattering - Classical theory – molecular polarizability – polarizability ellipsoid - Quantum theory of Raman effect - rotational Raman spectra of linear molecule symmetric top molecule – Stokes and anti-stokes line- SR branch -Raman activity of H2O and CO2 -Mutual exclusion principle- determination of N2O structure -Instrumentation technique and block diagram -structure determination of planar and non-planar molecules using IR and Raman techniques - FT Raman spectroscopy- SERS.

	RESONANCE SPECTROSCOPY						
UNIT – IV	Nuclear and Electron spin-Interaction with magnetic field - Population of Energy levels - Larmor precession- Relaxation times - Double resonance- Chemical shift and its measurement - NMR of Hydrogen nuclei - Indirect Spin -Spin Interaction – interpretation of simple organic molecules - Instrumentation techniques of NMR spectroscopy – NMR in Chemical industries- MRI Scan. Electron Spin Resonance: Basic principle –Total Hamiltonian (Direct Dipole-Dipole interaction and Fermi Contact Interaction) – Hyperfine Structure (Hydrogen atom) – ESR Spectra of Free radicals –g-factors – Instrumentation - Medical applications of ESR.						
	UV SPECTROSCOPY						
UNIT V	Origin of UV spectra - Laws of absorption – Lambert Bouguer law – Lambert Beer law - molar absorptivity – transmittance and absorbance - Color in organic compounds- Absorption by organic Molecule -Chromophores -Effect of conjugation on chromophores - Choice of Solvent and Solvent effect - Absorption by inorganic systems - Instrumentation - double beam UV-Spectrophotometer - Simple applications						
	1. C. N. Banwell and E M McCash, 1994, Fundamentals of Molecular Spectroscopy, 4th Edition, Tata McGraw–Hill, New Delhi.						
	2. G. Aruldhas, 1994, Molecular Structure and Molecular Spectroscopy, Prentice–Hall of India, New Delhi.						
TEXT BOOKS	3. D.N. Satyanarayana, 2001, Vibrational Spectroscopy and Applications, New Age International Publication.						
	4. B.K. Sharma, 2015, Spectroscopy, Goel Publishing House Meerut.						
	5. P.S.Kalsi, 2016, Spectroscopy of Organic Compounds (7th Edition), New Age International Publishers.						
	1. J. L. McHale, 2008, Molecular Spectroscopy, Pearson Education India, New Delhi.						
REFERENCE	2. J. M. Hollas, 2002, Basic Atomic and Molecular Spectroscopy, Royal Society of Chemistry, RSC, Cambridge.						
	3. B. P. Straughan and S. Walker, 1976, Spectroscopy Vol. I, Chapman and Hall, New York.						
	4. K. Chandra, 1989, Introductory Quantum Chemistry, Tata McGraw Hill, New Delhi.						
	5. W.Demtroder, Laser Spectroscopy: Basic concepts and Instrumentation, Springer.						
	1. https://www.youtube.com/watch?v=0iQhirTf2PI						
	2. https://www.coursera.org/lecture/spectroscopy/introduction-3N5D5						
WEB SOURCES	3. https://www.coursera.org/lecture/spectroscopy/infrared-spectroscopy-8jEee						
	4. https://onlinecourses.nptel.ac.in/noc20_cy08/preview						
	5. https://www.coursera.org/lecture/spectroscopy/nmr-spectroscopy-introduction-XCWRu						

Course Outcomes (CO): On completion of the course, students should be able to

CO Number	CO Statement	Knowledge Level
CO1	Understand fundamentals of rotational spectroscopy, view molecules as elastic rotors and interpret their behaviour. Able to quantify their nature and correlate them with their characteristic properties.	K_1
CO2	Understand the working principles of spectroscopic instruments and theoretical background of IR spectroscopy. Able to correlate mathematical process of Fourier transformations with instrumentation. Able to interpret vibrational spectrum of small molecules.	K_2
CO3	Interpret structures and composition of molecules and use their knowledge of Raman Spectroscopy as an important analytical tool	K ₃
CO4	Use these resonance spectroscopic techniques for quantitative and qualitative estimation of a substances	K_4
CO5	Learn the electronic transitions caused by absorption of radiation in the UV/Vis region of the electromagnetic spectrum and be able to analyze a simple UV spectrum	K ₅

MAPPING WITH PROGRAM OUTCOMES:

Map course outcomes (CO) for each course with program outcomes (PO) and program specific outcomes (PSO) in the 3-point scale of STRONG (3), MEDIUM (2) andLOW (1).

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	3	3	3	2	3	3	3	3	3	2
CO2	2	2	2	3	3	3	3	3	3	2
CO3	3	2	3	3	3	3	3	3	3	3
CO4	3	2	3	3	3	3	3	3	3	3
CO5	3	3	3	3	3	3	3	3	3	3

	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6	PSO7	PSO8	PSO9	PSO10
C01	3	3	3	2	3	3	3	3	3	2
CO2	2	2	2	3	3	3	3	3	3	2
CO3	3	2	3	3	3	3	3	3	3	3
CO4	3	2	3	3	3	3	3	3	3	3
CO5	3	3	3	3	3	3	3	3	3	3

Subject Code	Subject Name	Category	L	Т	Р	Credits	Inst. Hours	Marks
24PPHCCQ4	Core Practical – IV Computational Physics	Core Course - XIII	-	-	3	1	3	60

Pre-Requisites	
Fundamentals of digital principles	
Learning Objectives	
	he concepts of physical science.
	Course Details
	Y EIGHT EXPERIMENTS)
1. Microprocessor Program-ASCII to Hexa	decimal and hexadecimal to ASCII
2. Microprocessor Program -Factorial of a g	given number
3.Microprocessor Program -Square root of	a given number
4 Microcontroller Program - Keyboard disp	play interface
5.Microcontroller Program-Traffic control	Interface
6.Micro-controller Program-Seven Segmer	nt LED display interface
7.Microcontroller Programs – Arithmetic o	operations
8.C programs (i) To find the length of the	estring
(ii) To find the biggest num	nber
9.C programs (i) Sorting of names	
(ii) Searching name in an a	rray
10.C program	
1. Matrix multiplicatio 2. Rank list 11. C program	n
1.Solution of Ordinary	y Differential Equation by Euler
2. Newton forward int	erpolation formula
12. Determine Dipole moment (µ), polariz	vability (\Box) and first-order hyperpolarizability (β)
Using Gaussian 09 software program	ne

1. Douglas V. Hall, Microprocessors and Interfacing programming and Hardware,
Tata Mc Graw Hill Publications (2008)
2. Muhammad Ali Mazidi, Janice GillispieMazidi, Rolin D. Mckinlay,
The 8051 Microcontroller and Embedded Systems, Pearson Education (2008).
3. V. Vijayendran, 2005, Fundamentals of Microprocessor-8085",
3rd Edition S.Visvanathan Pvt, Ltd.
4. The 8085 Microprocessor, Architecture, Programming and Interfacing –
K.Udaya Kumar, S. Uma Shankar, Pearson
5. Fundamentals of Microprocessors and Microcontrollers - B. Ram, Dhanpat Rai
Publications
1. W. A. Tribel, Avtar Singh, "The 8086/8088 Microprocessors: Programming,
Interfacing, Software, Hardware and Applications", Prentice-Hall of India,
New Delhi.
2. Microprocessor and Its Application - S. Malarvizhi, Anuradha Agencies
Publications
3. Microprocessor Architecture, Program And Its Application With 8085 - R.S.
Gaonkar, New Age International (P) Ltd
4. Barry B. Brey, 1995, The Intel Microprocessors 8086/8088, 80186, 80286,
80386 and 80486, 3rd Edition, Prentice- Hall of India, New Delhi.
5. J. Uffrenbeck, "The 8086/8088 Family-Design, Programming and Interfacing,
Software, Hardware and Applications", Prentice-Hall of India, New Delhi.

Subject Code	Subject Name	Category	L	Т	Р	Credits	Inst. Hours	Marks	
24PPHDSEC6A	Numerical Methods and Computer Programming	Elective – VI	2	1	-	3	3	70	
Pre-Requisites						<u> </u>			
Prior knowledge	on computer and basic mathe	ematics							
Learning Object	tives								
🛛 To un	ake students to understand dif derstand the basics of progra SOLUTIONS OF EQUAT Roots of polynomials non	mming IONS						ons usin	
UNITI	Roots of polynomials, nonlinear algebraic equations and transcendental equations using Bisection and Newton-Raphson methods – Convergence of solutions in Bisection and Newton-Raphson methods – Limitations of Bisection and Newton-Raphson methods.								
UNIT II	Simultaneous linear equation of simultaneous equations elimination method – Gaus method - Eigen values and find the Eigen values and Eig	ns and their matrix by Matrix inversions s Jordan method eigenvectors of matrix	ion n – Inv	netho erse	da ofa	nd its limi ı matrix by	itations – 7 Gauss ei	Gaussia liminatio	
UNIT III	INTERPOLATION AND	CURVE FITTING	Ĵ						
	Interpolation with equally s Interpolation with unevenly of least squares – Fitting a po	spaced points - Lag						-	
	INTEGRATION AND SO	LUTION OF DIFI	FERI	ENTI	AL	EQUATIO	NS		
UNIT IV	Numerical integration – Tra equations – Euler and Runge	-	npson	ı's ru	le –s	solution of	ordinary d	lifferentia	
	PROGRAMMING WITH	С							
UNIT V	Flow-charts – Integer and floating point arithmetic expressions – Built-in functions – Executable and non-executable statements – Subroutines and functions – Programs for the following computational methods: (a) Roots of polynomials by bisection method, (b) Non- linear equations by the Newton-Raphson method, (c) Newton's forward and backward interpolation, Lagrange Interpolation, (d) Trapezoidal and Simpson's Rules, (e) Solution of first order differential equations by Euler's method.								

	 V. Rajaraman, 1993, Computer oriented Numerical Methods, 3rd Edition. PHI, New Delhi. 						
	 M. K. Jain, S. R. Iyengar and R. K. Jain, 1995, Numerical Methods for Scientific and Engineering Computation, 3rd Edition, New Age Intl., New Delhi. 						
TEXT BOOKS	3. S. S. Sastry, Introductory Methods of Numerical analysis, PHI, New Delhi.						
	 F. Scheid, 1998, Numerical Analysis, 2nd Edition, Schaum's series, McGraw Hill, New York. 						
	 W. H. Press, S. A. Teukolsky, W. T. Vetterling and B. P. Flannery, 1992, Numerical Recipes in FORTRAN, 2nd Edition, Cambridge Univ. Press. 						
	 S. D. Conte and C. de Boor, 1981, Elementary Numerical analysis-an algorithmic approach, 3rd Edition, McGraw Hill. 						
REFERENCE	 B. F. Gerald, and P. O. Wheatley, 1994, Applied Numerical analysis, 5th Edition, Addison- Wesley, MA. 						
BOOKS	 B. Carnagan, H. A. Luther and J. O. Wilkes, 1969, Applied Numerical Methods, Wiley, New York. 						
	4. S. S. Kuo, 1996, Numerical Methods and Computers, Addison-Wesley.						
	5. V. Rajaraman, Programming in FORTRAN / Programming in C, PHI, New Delhi.						
	1.https://www.scribd.com/doc/202122350/Computer-Oriented-Numerical-Methods-by-V- RajaRaman						
WEB SOURCES	 https://www.scirp.org/(S(lz5mqp453edsnp55rrgjct55))/reference/referencespapers.aspx?ref erenceid=1682874 						
	3. https://nptel.ac.in/course/122106033/						
	4. https://nptel.ac.in/course/103106074/						
	5. https://onlinecourses.nptel.ac.in/noc20_ma33/preview						

Course Outcomes: On completion of the course, students should be able to

CO Number	CO Statement	Knowledge Level
CO1	Recall the transcendental equations and analyze the different root finding methods. Understand the basic concept involved in root finding procedure such as Newton Raphson and Bisection methods, their limitations.	Κ1
CO2	Relate Simultaneous linear equations and their matrix representation Distinguish between various methods in solving simultaneous linear equations.	

СОЗ	Understand, how interpolation will be used in various realms of physics and Apply to some simple problems Analyze the newton forward and backward interpolation	
CO4	Recollect and apply methods in numerical differentiation and integration. Assess the trapezoidal and Simson's method of numerical integration.	
CO5	Understand the basics of C-programming and conditional statements.	K ₅

MAPPING WITH PROGRAM OUTCOMES:

Map course outcomes (CO) for each course with program outcomes (PO) and program specific outcomes (PSO) in the 3-point scale of STRONG (3), MEDIUM (2) and LOW (1)

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	3	2	3	1	1	2	3	2	2	3
CO2	3	2	3	1	1	2	3	2	2	3
CO3	3	2	3	1	1	2	3	2	2	3
CO4	3	2	3	1	1	2	3	2	2	3
CO5	3	2	3	1	1	2	3	2	2	3
	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6	PSO7	PSO8	PSO9	PSO10
C01	3	2	3	1	1	2	3	2	2	3
CO2	3	2	3	1	1	2	3	2	2	3
CO3	3	2	3	1	1	2	3	2	2	3
CO4	3	2	3	1	1	2	3	2	2	3
CO5	3	2	3	1	1	2	3	2	2	3

Subject Code	Subject Name	Category	L	Т	Р	Credits	Inst. Hours	Marks
24PPHDSEC6B	SOLAR ENERGY UTILIZATION	Elective	2	1	-	3	3	70

Pre-Requ	isites
Basic know	wledge of heat energy, way of transfer of heat, solar energy, materials types
Learning	Objectives
•	To impart fundamental aspects of solar energy utilization.
•	To give adequate exposure to solar energy related industries
•	To harness entrepreneurship skills
•	To understand the different types of solar cells and channelizing them to the different sectors of

- To understand the different types of so society
- To develop an industrialist mindset by utilizing renewable source of energy

UNITS	Course Details							
UNIT I	HEAT TRANSFER & RADIATION ANALYSIS							
	Conduction, Convection and Radiation – Solar Radiation at the earth's surface - Determination of solar time – Solar energy measuring instruments.							
UNIT II	SOLAR COLLECTORS Physical principles of conversion of solar radiation into heat flat plate collectors - General characteristics – Focusing collector systems – Thermal performance evaluation of optical loss.							
UNIT III	SOLAR HEATERS Types of solar water heater - Solar heating system – Collectors and storage tanks – Solar ponds – Solar cooling systems.							
UNIT IV	SOLAR ENERGY CONVERSIONPhoto Voltaic principles – Types of solar cells – Crystalline silicon/amorphous silicon and Thermo - electric conversion - process flow of silicon solar cells- different approaches on the process- texturization, diffusion, Antireflective coatings, metallization.							
UNIT V	NANOMATERIALS IN FUEL CELL APPLICATIONS Use of nanostructures and nanomaterials in fuel cell technology - high and low temperature fuel cells, cathode and anode reactions, fuel cell catalysts, electrolytes, ceramic catalysts. Use of Nano technology in hydrogen production and storage.							
	Industrial visit – data collection and analysis - presentation							

TEXT BOOKS	1. Solar energy utilization -G.D. Rai – Khanna publishers – Delhi 1987.
	2. Maheshwar Sharon, Madhuri Sharon, Carbon "Nano forms and Applications",
	Mc Graw-Hill, 2010.
	3. Soteris A. Kalogirou, "Solar Energy Engineering: Processes and Systems",
	Academic Press, London, 2009
	4. Tiwari G.N, "Solar Energy – Fundamentals Design, Modelling and applications,
	Narosa Publishing House, New Delhi, 2002
	5. Sukhatme S.P. Solar Energy, Tata McGraw Hill Publishing Company Ltd., New
	Delhi, 1997.
REFERENCE	1. Energy – An Introduction to Physics – R.H.Romer, W.H.Freeman.(1976)
BOOKS	2. Solar energy thermal processes – John A.Drife and William. (1974)
	3. John W. Twidell& Anthony D.Weir, 'Renewable Energy Resources, 2005
	4. John A. Duffie, William A. Beckman, Solar Energy: Thermal Processes,
	4th Edition, john Wiley and Sons, 2013
	5. Duffie, J.A., Beckman, W.A., "Solar Energy Thermal Process", John Wiley and
	Sons,2007.
WEB	1. https://pdfs.semanticscholar.org/63a5/a69421b69d2ce9f359bbfc86c63556f9a4fb
SOURCES	2. https://books.google.vg/books?id=l-
	XHcwZo9XwC&sitesec=buy&source=gbs_vpt_read
	3. www.nptel.ac.in/courses/112105051
	4. www.freevideolectures.com
	5. http://www.e-booksdirectory.com

At the end of the course, the student will be able to:

CO1	Gained knowledge in fundamental aspects of solar energy utilization	K1
CO2	Equipped to take up related job by gaining industry exposure	К3
CO3	Develop entrepreneurial skills	К5
CO4	Skilled to approach the needy society with different types of solar cells	K4
CO5	Gained industrialist mindset by utilizing renewable source of energy	K2, K3

MAPPING WITH PROGRAM OUTCOMES:

Map course outcomes (**CO**) for each course with program outcomes (**PO**) and program specific outcomes (**PSO**) in the 3-point scale of STRONG (3), MEDIUM (2) andLOW (1).

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	3	2	3	3	3	2	2	2	3	2
CO2	2	3	2	2	3	3	2	3	2	2
CO3	2	3	2	2	2	2	3	3	3	2
CO4	2	2	2	3	2	3	2	3	3	2
CO5	2	2	3	2	3	3	3	3	3	3

	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6	PSO7	PSO8	PSO9	PSO10
CO1	3	2	3	3	3	2	2	2	3	2
CO2	2	3	2	2	3	3	2	3	2	2
CO3	2	3	2	2	2	2	3	3	3	2
CO4	2	2	2	3	2	3	2	3	3	2
CO5	2	2	3	2	3	3	3	3	3	3

Subject Code	Subject Name	Category	L	Т	Р	Credits	Inst. Hours	Marks
24PPHPCS	Characterization of Materials	Professional Competency Skill	3	-	1	2	4	70

Pre-Requisites

Fundamentals of Heat and Thermodynamics, Basics of Optical systems, Microscopic systems, Electrical measurements and Fundamentals of Spectroscopy.

Learning Objectives

- To make the students learn some important thermal analysis techniques namely TGA, DTA, DSC and TMA.
- To make the students understand the theory of image formation in an optical microscope and to introduce other specialized microscopic techniques.
- To make the students learn and understand the principle of working of electron microscopes and scanning probe microscopes.
- To make the students understand some important electrical and optical characterization techniques for semiconducting materials.
- To introduce the students the basics of x-ray diffraction techniques and some important spectroscopic techniques.

	THERMAL ANALYSIS
UNIT I	Introduction – thermogravimetric analysis (TGA) – instrumentation – determination of weight loss and decomposition products – differential thermal analysis (DTA)- cooling curves – differential scanning calorimetry (DSC) – instrumentation – specific heat capacity measurements – determination of thermomechanical parameters
	MICROSCOPIC METHODS
UNIT II	Optical Microscopy: optical microscopy techniques – Bright field optical microscopy – Dark field optical microscopy – Dispersion staining microscopy - phase contrast microscopy –differential interference contrast microscopy - fluorescence microscopy - confocal microscopy -digital holographic microscopy - oil immersion objectives - quantitative metallography - image analyzer.
	ELECTRON MICROSCOPY AND SCANNING PROBE MICROSCOPY
UNIT III	SEM, EDAX, EPMA, TEM: working principle and Instrumentation – sample preparation – Data collection, processing and analysis- Scanning tunneling microscopy (STEM) - Atomic force microscopy (AFM) - Scanning new field optical microscopy.
	ELECTRICAL METHODS AND OPTICAL CHARACTERISATION
UNIT IV	Two probe and four probe methods- van der Pauw method – Hall probe and measurement – scattering mechanism – C-V characteristics – Schottky barrier capacitance – impurity concentration – electrochemical C-V profiling – limitations. Photoluminescence – light – matter interaction – instrumentation – electroluminescence – instrumentation – Applications.

	X-RAY METHODS							
UNIT V	X-Ray Powder diffraction - Powder diffractometer -interpretation of diffraction patterns - indexing - phase identification - residual stress analysis - Particle size, texture studies - X- ray fluorescence spectroscopy - uses.							
	 R. A. Stradling and P. C. Klipstain. Growth and Characterization of semiconductors. Adam Hilger, Bristol, 1990. 							
	2. J. A. Belk. Electron microscopy and microanalysis of crystalline materials. Applied Science Publishers, London, 1979.							
TEXT BOOKS	 Lawrence E. Murr. Electron and Ion microscopy and Microanalysis principles and Applications. Marcel Dekker Inc., New York, 1991 							
	 D. Kealey and P. J. Haines. Analytical Chemistry. Viva Books Private Limited, New Delhi, 2002. 							
	 Li, Lin, Ashok Kumar Materials Characterization Techniques Sam Zhang; CRC Press, (2008). 							
	1. Cullity, B.D., and Stock, R.S., "Elements of X-Ray Diffraction , Prentice-Hall, (2001).							
	2. Murphy, Douglas B, Fundamentals of Light Microscopy and Electronic Imaging, Wiley- Liss, Inc. USA, (2001).							
REFERENCE BOOKS	3. Tyagi, A.K., Roy, Mainak, Kulshreshtha, S.K., and Banerjee, S., Advanced Techniques for Materials Characterization, Materials Science Foundations (monograph series), Volumes 49 – 51, (2009).Volumes 49 – 51, (2009).							
	4. Wendlandt, W.W., Thermal Analysis, John Wiley & Sons, (1986).							
	5. Wachtman, J.B., Kalman, Z.H., Characterization of Materials, Butter worth Heinemann, (1993).							
WEB SOURCES	1. https://cac.annauniv.edu/uddetails/udpg_2015/77.%20Mat%20Sci(AC).pdf 2. http://www.digimat.in/nptel/courses/video/113106034/L11.html 3. https://nptel.ac.in/courses/104106122							
	4. https://nptel.ac.in/courses/118104008							
	5. https://www.sciencedirect.com/journal/materials-characterization							

At the end of the course, the student will be able to:

CO1	Describe the TGA, DTA, DSC and TMA thermal analysis techniques and make interpretation of the results.	K1, K3
CO2	The concept of image formation in Optical microscope, developments in other specialized microscopes and their applications.	К2
CO3	The working principle and operation of SEM, TEM, STM and AFM.	K2, K3
CO4	Understood Hall measurement, four –probe resistivity measurement, C-V, I-V, Electrochemical, Photoluminescence and electroluminescence experimental techniques with necessary theory.	K3, K4
CO5	The theory and experimental procedure for x- ray diffraction and their applications.	K4,K5

MAPPING WITH PROGRAM OUTCOMES:

Map course outcomes (**CO**) for each course with program outcomes (**PO**) and program specific outcomes (**PSO**) in the 3-point scale of STRONG (3), MEDIUM (2) and LOW (1).

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	3	3	3	2	2	2	2	2	2	3
CO2	3	3	3	2	2	2	2	2	2	2
CO3	3	3	2	2	2	3	2	2	2	2
CO4	2	2	2	3	2	3	2	2	2	2
CO5	2	2	2	2	2	2	3	2	2	2

	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6	PSO7	PSO8	PSO9	PSO10
CO1	3	3	3	2	2	2	2	2	2	3
CO2	3	3	3	2	2	2	2	2	2	2
CO3	3	3	2	2	2	3	2	2	2	2
CO4	2	2	2	3	2	3	2	2	2	2
CO5	2	2	2	2	2	2	3	2	2	2